These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35094989)

  • 1. ATP release from erythrocytes: A role of adenosine1.
    Misiti F; Carelli-Alinovi C; Rodio A
    Clin Hemorheol Microcirc; 2022; 80(2):61-71. PubMed ID: 35094989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloid peptide inhibits ATP release from human erythrocytes.
    Misiti F; Orsini F; Clementi ME; Masala D; Tellone E; Galtieri A; Giardina B
    Biochem Cell Biol; 2008 Dec; 86(6):501-8. PubMed ID: 19088798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red not dead: signaling in and from erythrocytes.
    Sprague RS; Stephenson AH; Ellsworth ML
    Trends Endocrinol Metab; 2007 Nov; 18(9):350-5. PubMed ID: 17959385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced deformability contributes to impaired deoxygenation-induced ATP release from red blood cells of older adult humans.
    Racine ML; Dinenno FA
    J Physiol; 2019 Sep; 597(17):4503-4519. PubMed ID: 31310005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: a new mechanism for nitrite-induced vasodilation.
    Cao Z; Bell JB; Mohanty JG; Nagababu E; Rifkind JM
    Am J Physiol Heart Circ Physiol; 2009 Oct; 297(4):H1494-503. PubMed ID: 19700624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible roles for ATP release from RBCs exclude the cAMP-mediated Panx1 pathway.
    Keller AS; Diederich L; Panknin C; DeLalio LJ; Drake JC; Sherman R; Jackson EK; Yan Z; Kelm M; Cortese-Krott MM; Isakson BE
    Am J Physiol Cell Physiol; 2017 Dec; 313(6):C593-C603. PubMed ID: 28855161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular ATP activates eNOS and increases intracellular NO generation in Red Blood Cells.
    Ulker P; Özen N; Abdullayeva G; Köksoy S; Yaraş N; Basrali F
    Clin Hemorheol Microcirc; 2018; 68(1):89-101. PubMed ID: 29036803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation.
    Jagger JE; Bateman RM; Ellsworth ML; Ellis CG
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2833-9. PubMed ID: 11356642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation.
    Crawford JH; Isbell TS; Huang Z; Shiva S; Chacko BK; Schechter AN; Darley-Usmar VM; Kerby JD; Lang JD; Kraus D; Ho C; Gladwin MT; Patel RP
    Blood; 2006 Jan; 107(2):566-74. PubMed ID: 16195332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea.
    Lockwood SY; Erkal JL; Spence DM
    Nitric Oxide; 2014 Apr; 38():1-7. PubMed ID: 24530476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP in red blood cells as biomarker for sepsis in humans.
    Li Y; Zhou J; Burkovskiy I; Yeung P; Lehmann C
    Med Hypotheses; 2019 Mar; 124():84-86. PubMed ID: 30798924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream.
    Carroll JS; Ku CJ; Karunarathne W; Spence DM
    Anal Chem; 2007 Jul; 79(14):5133-8. PubMed ID: 17580956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The capacity of red blood cells to reduce nitrite determines nitric oxide generation under hypoxic conditions.
    Fens MH; Larkin SK; Oronsky B; Scicinski J; Morris CR; Kuypers FA
    PLoS One; 2014; 9(7):e101626. PubMed ID: 25007272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NO inhibits signal transduction pathway for ATP release from erythrocytes via its action on heterotrimeric G protein Gi.
    Olearczyk JJ; Stephenson AH; Lonigro AJ; Sprague RS
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H748-54. PubMed ID: 15072952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemolysis is a primary ATP-release mechanism in human erythrocytes.
    Sikora J; Orlov SN; Furuya K; Grygorczyk R
    Blood; 2014 Sep; 124(13):2150-7. PubMed ID: 25097178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide inhibits ATP release from erythrocytes.
    Olearczyk JJ; Ellsworth ML; Stephenson AH; Lonigro AJ; Sprague RS
    J Pharmacol Exp Ther; 2004 Jun; 309(3):1079-84. PubMed ID: 14766946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine.
    Mortensen SP; González-Alonso J; Bune LT; Saltin B; Pilegaard H; Hellsten Y
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1140-8. PubMed ID: 19118095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate interferes with ATP release from red blood cells.
    Rozier MD; Zata VJ; Ellsworth ML
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H3038-42. PubMed ID: 17307994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of C-peptide-mediated rescue of low O2-induced ATP release from erythrocytes of humans with type 2 diabetes.
    Richards JP; Bowles EA; Gordon WR; Ellsworth ML; Stephenson AH; Sprague RS
    Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(5):R411-8. PubMed ID: 25552662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes.
    Faris A; Spence DM
    Analyst; 2008 May; 133(5):678-82. PubMed ID: 18427692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.