These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35095398)

  • 1. Does Oblique Effect Affect SSVEP-Based Visual Acuity Assessment?
    Zheng X; Xu G; Du Y; Li H; Han C; Tian P; Li Z; Du C; Yan W; Zhang S
    Front Neurosci; 2021; 15():784888. PubMed ID: 35095398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the performance of six stimulus paradigms in visual acuity assessment based on steady-state visual evoked potentials.
    Zheng X; Xu G; Wu Y; Wang Y; Du C; Wu Y; Zhang S; Han C
    Doc Ophthalmol; 2020 Dec; 141(3):237-251. PubMed ID: 32405730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-fatigue Performance in SSVEP-Based Visual Acuity Assessment: A Comparison of Six Stimulus Paradigms.
    Zheng X; Xu G; Zhang Y; Liang R; Zhang K; Du Y; Xie J; Zhang S
    Front Hum Neurosci; 2020; 14():301. PubMed ID: 32848675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time, precise, rapid and objective visual acuity assessment by self-adaptive step SSVEPs.
    Zheng X; Xu G; Du C; Yan W; Tian P; Zhang K; Liang R; Han C; Zhang S
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33887707
    [No Abstract]   [Full Text] [Related]  

  • 5. Enhancing Performance of SSVEP-Based Visual Acuity via Spatial Filtering.
    Zheng X; Xu G; Han C; Tian P; Zhang K; Liang R; Jia Y; Yan W; Du C; Zhang S
    Front Neurosci; 2021; 15():716051. PubMed ID: 34489633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Performance of Single-Channel SSVEP-Based Visual Acuity Assessment via Mode Decomposition.
    Zheng X; Zhang X; Xu G; Zhang R
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4203-4210. PubMed ID: 37812551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of stimulus orientation on spatial frequency function of the visual evoked potential.
    Arakawa K; Tobimatsu S; Kurita-Tashima S; Nakayama M; Kira JI; Kato M
    Exp Brain Res; 2000 Mar; 131(1):121-5. PubMed ID: 10759177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the Influence of Chromatic and Luminance Stimuli on SSVEPs from Behind-the-Ears and Occipital Areas.
    Floriano A; F Diez P; Freire Bastos-Filho T
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29462975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Validity of Steady-State Visual Evoked Potentials as Attention Tags and Input Signals: A Critical Perspective of Frequency Allocation and Number of Stimuli.
    Wang L; Han D; Qian B; Zhang Z; Zhang Z; Liu Z
    Brain Sci; 2020 Sep; 10(9):. PubMed ID: 32906625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation-selective contrast adaptation measured with SSVEP.
    Vergeer M; Mesik J; Baek Y; Wilmerding K; Engel SA
    J Vis; 2018 May; 18(5):2. PubMed ID: 29715332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oblique effect in Chinese infants and adults.
    Fang LL; Bauer J; Held R; Gwiazda J
    Optom Vis Sci; 1997 Oct; 74(10):816-21. PubMed ID: 9383796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual evoked responses in humans with abnormal visual experience.
    Freeman RD; Thibos LN
    J Physiol; 1975 Jun; 247(3):711-24. PubMed ID: 1142304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary study for extraction of P300 and SSVEP by stimulus presentation using phase inversion technique in hybrid BCI.
    Fukami T; Ishihara K; Ishikawa F
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():63-6. PubMed ID: 26736201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of visual stimuli noise and fatigue on steady-state visual evoked potentials.
    Zhang S; Gao X
    J Neural Eng; 2019 Sep; 16(5):056023. PubMed ID: 31051481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dichoptic study of the oblique effect.
    Borra T; Hooge IT; Verstraten FA
    Perception; 2010; 39(7):909-17. PubMed ID: 20842968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface.
    Chen Yang ; Xu Han ; Yijun Wang ; Xiaorong Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1930-1933. PubMed ID: 29060270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of high-frequency visual stimuli above the critical flicker frequency in a SSVEP-based BMI.
    Sakurada T; Kawase T; Komatsu T; Kansaku K
    Clin Neurophysiol; 2015 Oct; 126(10):1972-8. PubMed ID: 25577407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.