These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 35096363)

  • 1. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives.
    Stocco E; Porzionato A; De Rose E; Barbon S; De Caro R; Macchi V
    J Tissue Eng; 2022; 13():20417314211065860. PubMed ID: 35096363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current advances in engineering meniscal tissues: insights into 3D printing, injectable hydrogels and physical stimulation based strategies.
    Bandyopadhyay A; Ghibhela B; Mandal BB
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38277686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional-Printed Scaffolds for Meniscus Tissue Engineering: Opportunity for the Future in the Orthopaedic World.
    Vasiliadis AV; Koukoulias N; Katakalos K
    J Funct Biomater; 2021 Dec; 12(4):. PubMed ID: 34940548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink.
    Chae S; Lee SS; Choi YJ; Hong DH; Gao G; Wang JH; Cho DW
    Biomaterials; 2021 Jan; 267():120466. PubMed ID: 33130320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue Engineering Applications of Three-Dimensional Bioprinting.
    Zhang X; Zhang Y
    Cell Biochem Biophys; 2015 Jul; 72(3):777-82. PubMed ID: 25663505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering.
    Jian Z; Zhuang T; Qinyu T; Liqing P; Kun L; Xujiang L; Diaodiao W; Zhen Y; Shuangpeng J; Xiang S; Jingxiang H; Shuyun L; Libo H; Peifu T; Qi Y; Quanyi G
    Bioact Mater; 2021 Jun; 6(6):1711-1726. PubMed ID: 33313450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs.
    Tavafoghi M; Darabi MA; Mahmoodi M; Tutar R; Xu C; Mirjafari A; Billi F; Swieszkowski W; Nasrollahi F; Ahadian S; Hosseini V; Khademhosseini A; Ashammakhi N
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34130266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biofabrication: new approaches for tissue regeneration].
    Horch RE; Weigand A; Wajant H; Groll J; Boccaccini AR; Arkudas A
    Handchir Mikrochir Plast Chir; 2018 Apr; 50(2):93-100. PubMed ID: 29378379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in 3D Bioprinting of Biomimetic and Engineered Meniscal Grafts.
    Lv H; Deng G; Lai J; Yu Y; Chen F; Yao J
    Macromol Biosci; 2023 Dec; 23(12):e2300199. PubMed ID: 37436941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Status of Development and Intellectual Properties of Biomimetic Medical Materials.
    Gopinathan J; Noh I
    Adv Exp Med Biol; 2018; 1064():377-399. PubMed ID: 30471044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meniscus heterogeneity and 3D-printed strategies for engineering anisotropic meniscus.
    Du MZ; Dou Y; Ai LY; Su T; Zhang Z; Chen YR; Jiang D
    Int J Bioprint; 2023; 9(3):693. PubMed ID: 37273997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Knee Meniscus Regeneration Strategies: a Review on Recent Advances.
    Pillai MM; Gopinathan J; Selvakumar R; Bhattacharyya A
    Curr Osteoporos Rep; 2018 Jun; 16(3):224-235. PubMed ID: 29663192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed cell-free PCL-MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration.
    Guo W; Chen M; Wang Z; Tian Y; Zheng J; Gao S; Li Y; Zheng Y; Li X; Huang J; Niu W; Jiang S; Hao C; Yuan Z; Zhang Y; Wang M; Wang Z; Peng J; Wang A; Wang Y; Sui X; Xu W; Hao L; Zheng X; Liu S; Guo Q
    Bioact Mater; 2021 Oct; 6(10):3620-3633. PubMed ID: 33869902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofabrication of small diameter tissue-engineered vascular grafts.
    Weekes A; Bartnikowski N; Pinto N; Jenkins J; Meinert C; Klein TJ
    Acta Biomater; 2022 Jan; 138():92-111. PubMed ID: 34781026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprintable tough hydrogels for tissue engineering applications.
    Dorishetty P; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2020 Jul; 281():102163. PubMed ID: 32388202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.