These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35098151)

  • 1. Engineering the microwave to infrared noise photon flux for superconducting quantum systems.
    Danilin S; Barbosa J; Farage M; Zhao Z; Shang X; Burnett J; Ridler N; Li C; Weides M
    EPJ Quantum Technol; 2022; 9(1):1. PubMed ID: 35098151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of cryogenic low-pass filters.
    Thalmann M; Pernau HF; Strunk C; Scheer E; Pietsch T
    Rev Sci Instrum; 2017 Nov; 88(11):114703. PubMed ID: 29195349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstrip filters for measurement and control of superconducting qubits.
    Longobardi L; Bennett DA; Patel V; Chen W; Lukens JE
    Rev Sci Instrum; 2013 Jan; 84(1):014706. PubMed ID: 23387678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control and readout of a superconducting qubit using a photonic link.
    Lecocq F; Quinlan F; Cicak K; Aumentado J; Diddams SA; Teufel JD
    Nature; 2021 Mar; 591(7851):575-579. PubMed ID: 33762768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the attenuation of coaxial and rectangular microwave-frequency waveguides at cryogenic temperatures.
    Kurpiers P; Walter T; Magnard P; Salathe Y; Wallraff A
    EPJ Quantum Technol; 2017; 4(1):8. PubMed ID: 31179200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrow bandpass cryogenic filter for microwave measurements.
    Ivanov BI; Klimenko DN; Sultanov AN; Il'ichev E; Meyer HG
    Rev Sci Instrum; 2013 May; 84(5):054707. PubMed ID: 23742575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise measurement system at electron temperature down to 20 mK with combinations of the low pass filters.
    Hashisaka M; Yamauchi Y; Chida K; Nakamura S; Kobayashi K; Ono T
    Rev Sci Instrum; 2009 Sep; 80(9):096105. PubMed ID: 19791976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wideband cryogenic microwave low-noise amplifier.
    Ivanov BI; Volkhin DI; Novikov IL; Pitsun DK; Moskalev DO; Rodionov IA; Il'ichev E; Vostretsov AG
    Beilstein J Nanotechnol; 2020; 11():1484-1491. PubMed ID: 33083196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity piezo-mechanics for superconducting-nanophotonic quantum interface.
    Han X; Fu W; Zhong C; Zou CL; Xu Y; Sayem AA; Xu M; Wang S; Cheng R; Jiang L; Tang HX
    Nat Commun; 2020 Jun; 11(1):3237. PubMed ID: 32591510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.
    de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE
    Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryogenic microwave filter cavity with a tunability greater than 5 GHz.
    Clark TJ; Vadakkumbatt V; Souris F; Ramp H; Davis JP
    Rev Sci Instrum; 2018 Nov; 89(11):114704. PubMed ID: 30501360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Note: cryogenic coaxial microwave filters.
    Tancredi G; Schmidlin S; Meeson PJ
    Rev Sci Instrum; 2014 Feb; 85(2):026104. PubMed ID: 24593404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials loss measurements using superconducting microwave resonators.
    McRae CRH; Wang H; Gao J; Vissers MR; Brecht T; Dunsworth A; Pappas DP; Mutus J
    Rev Sci Instrum; 2020 Sep; 91(9):091101. PubMed ID: 33003823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits.
    Fan L; Zou CL; Cheng R; Guo X; Han X; Gong Z; Wang S; Tang HX
    Sci Adv; 2018 Aug; 4(8):eaar4994. PubMed ID: 30128351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooling photon-pressure circuits into the quantum regime.
    Rodrigues IC; Bothner D; Steele GA
    Sci Adv; 2021 Oct; 7(42):eabg6653. PubMed ID: 34652939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable microwave three-wave mixing via a single three-level superconducting quantum circuit.
    Liu YX; Sun HC; Peng ZH; Miranowicz A; Tsai JS; Nori F
    Sci Rep; 2014 Dec; 4():7289. PubMed ID: 25487352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband sample holder for microwave spectroscopy of superconducting qubits.
    Averkin AS; Karpov A; Shulga K; Glushkov E; Abramov N; Huebner U; Il'ichev E; Ustinov AV
    Rev Sci Instrum; 2014 Oct; 85(10):104702. PubMed ID: 25362429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving liquid chromatography-tandem mass spectrometry determinations by modifying noise frequency spectrum between two consecutive wavelet-based low-pass filtering procedures.
    Chen HP; Liao HJ; Huang CM; Wang SC; Yu SN
    J Chromatogr A; 2010 Apr; 1217(17):2804-11. PubMed ID: 20227706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diamond-based microwave quantum amplifier.
    Sherman A; Zgadzai O; Koren B; Peretz I; Laster E; Blank A
    Sci Adv; 2022 Dec; 8(49):eade6527. PubMed ID: 36475787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bench-Top Cooling of a Microwave Mode Using an Optically Pumped Spin Refrigerator.
    Wu H; Mirkhanov S; Ng W; Oxborrow M
    Phys Rev Lett; 2021 Jul; 127(5):053604. PubMed ID: 34397251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.