These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35098165)

  • 41. Protocol to visualize trans-interaction of clustered protocadherin using cIPAD, a fluorescent indicator, in cultured human cells and mouse neurons.
    Kanadome T; Hoshino N; Nagai T; Yagi T; Matsuda T
    STAR Protoc; 2024 Mar; 5(1):102844. PubMed ID: 38277267
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Localization and mobility of bacterial proteins by confocal microscopy and fluorescence recovery after photobleaching.
    Mullineaux CW
    Methods Mol Biol; 2007; 390():3-15. PubMed ID: 17951677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conditions for using FRAP as a quantitative technique--influence of the bleaching protocol.
    Trembecka DO; Kuzak M; Dobrucki JW
    Cytometry A; 2010 Apr; 77(4):366-70. PubMed ID: 20131402
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes.
    Kang M; Day CA; Drake K; Kenworthy AK; DiBenedetto E
    Biophys J; 2009 Sep; 97(5):1501-11. PubMed ID: 19720039
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct measurement of diffusion in olfactory cilia using a modified FRAP approach.
    Alevra M; Schwartz P; Schild D
    PLoS One; 2012; 7(7):e39628. PubMed ID: 22808046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ras Diffusion and Interactions with the Plasma Membrane Measured by FRAP Variations.
    Gutman O; Ehrlich M; Henis YI
    Methods Mol Biol; 2021; 2262():185-197. PubMed ID: 33977477
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photobleaching approaches to investigate diffusional mobility and trafficking of Ras in living cells.
    Goodwin JS; Kenworthy AK
    Methods; 2005 Oct; 37(2):154-64. PubMed ID: 16288889
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Monitoring and quantifying dynamic physiological processes in live neurons using fluorescence recovery after photobleaching.
    Staras K; Mikulincer D; Gitler D
    J Neurochem; 2013 Jul; 126(2):213-22. PubMed ID: 23496032
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluorescence recovery after photobleaching studies of lipid rafts.
    Kenworthy AK
    Methods Mol Biol; 2007; 398():179-92. PubMed ID: 18214381
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High probe intensity photobleaching measurement of lateral diffusion in cell membranes.
    Hagen GM; Roess DA; de León GC; Barisas BG
    J Fluoresc; 2005 Nov; 15(6):873-82. PubMed ID: 16315103
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescence Recovery After Photobleaching in Lipidic Cubic Phase (LCP-FRAP): A Precrystallization Assay for Membrane Proteins.
    Fenalti G; Abola EE; Wang C; Wu B; Cherezov V
    Methods Enzymol; 2015; 557():417-37. PubMed ID: 25950976
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fraping: A computational tool for detecting slight differences in fluorescence recovery after photobleaching (FRAP) data for actin polymerization analysis.
    Medina-Ruíz GI; Medina-Ruiz AI; Morán J
    Microsc Res Tech; 2024 Jul; 87(7):1541-1551. PubMed ID: 38425281
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simplified equation to extract diffusion coefficients from confocal FRAP data.
    Kang M; Day CA; Kenworthy AK; DiBenedetto E
    Traffic; 2012 Dec; 13(12):1589-600. PubMed ID: 22984916
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A nonfitting method using a spatial sine window transform for inhomogeneous effective-diffusion measurements by FRAP.
    Orlova DY; Bártová E; Maltsev VP; Kozubek S; Chernyshev AV
    Biophys J; 2011 Jan; 100(2):507-16. PubMed ID: 21244847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diffusion measured by fluorescence recovery after photobleaching based on multiphoton excitation laser scanning microscopy.
    Schnell EA; Eikenes L; Tufto I; Erikson A; Juthajan A; Lindgren M; de Lange Davies C
    J Biomed Opt; 2008; 13(6):064037. PubMed ID: 19123683
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved model of fluorescence recovery expands the application of multiphoton fluorescence recovery after photobleaching in vivo.
    Sullivan KD; Sipprell WH; Brown EB; Brown EB
    Biophys J; 2009 Jun; 96(12):5082-94. PubMed ID: 19527668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative FRAP in analysis of molecular binding dynamics in vivo.
    McNally JG
    Methods Cell Biol; 2008; 85():329-51. PubMed ID: 18155469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence recovery after photobleaching: direct measurement of diffusion anisotropy.
    Hashlamoun K; Abusara Z; Ramírez-Torres A; Grillo A; Herzog W; Federico S
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2397-2412. PubMed ID: 32562093
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular diffusion and binding analyzed with FRAP.
    Wachsmuth M
    Protoplasma; 2014 Mar; 251(2):373-82. PubMed ID: 24390250
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterizing neurotrophic factor-induced synaptic growth in primary mouse neuronal cultures.
    He G; Wang XY; Jia Z; Zhou Z
    STAR Protoc; 2022 Mar; 3(1):101112. PubMed ID: 35098164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.