BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35098227)

  • 1. A Preinstalled Protic Cation as a Switch for Superprotonic Conduction in a Metal-Organic Framework.
    Otsubo K; Nagayama S; Kawaguchi S; Sugimoto K; Kitagawa H
    JACS Au; 2022 Jan; 2(1):109-115. PubMed ID: 35098227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOF-Based Solid-State Proton Conductors Obtained by Intertwining Protic Ionic Liquid Polymers with MIL-101.
    Zhang S; Xie Y; Somerville RJ; Tirani FF; Scopelliti R; Fei Z; Zhu D; Dyson PJ
    Small; 2023 Oct; 19(41):e2206999. PubMed ID: 37317016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superprotonic Conductivity of MOFs Confining Zwitterionic Sulfamic Acid as Proton Source and Conducting Medium.
    Sharma A; Lim J; Lee S; Han S; Seong J; Bin Baek S; Soo Lah M
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202302376. PubMed ID: 37160648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Tetradentate Phosphonate Ligand-based Ni-MOF as a Support for Designing High-performance Proton-conducting Materials.
    Chakraborty D; Ghorai A; Chowdhury A; Banerjee S; Bhaumik A
    Chem Asian J; 2021 Jun; 16(12):1562-1569. PubMed ID: 33885226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton Conducting Metal-Organic Frameworks (MOFs) via Post Synthetic Transmetallation and Water Induced Structural Transformations.
    Goswami A; Ghorai A; Pal D; Banerjee S; Biradha K
    Chemistry; 2024 Jun; ():e202402165. PubMed ID: 38925585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced proton conductivity by guest molecule exchange in an acylamide-functionalized metal-organic framework.
    Feng ZJ; Li JJ; Sun J; Wu XS; Li Y; Wu D; Li SH; Wang XL; Su ZM
    Dalton Trans; 2023 May; 52(20):6847-6852. PubMed ID: 37144551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.
    Horike S; Umeyama D; Kitagawa S
    Acc Chem Res; 2013 Nov; 46(11):2376-84. PubMed ID: 23730917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of crystalline proton-conducting pathways by water-induced transformations of hydrogen-bonding networks in a metal-organic framework.
    Sadakiyo M; Yamada T; Honda K; Matsui H; Kitagawa H
    J Am Chem Soc; 2014 May; 136(21):7701-7. PubMed ID: 24795110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superprotonic Conductivity of MOF-808 Achieved by Controlling the Binding Mode of Grafted Sulfamate.
    Sharma A; Lim J; Jeong S; Won S; Seong J; Lee S; Kim YS; Baek SB; Lah MS
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14334-14338. PubMed ID: 33960088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Organic Frameworks and Other Crystalline Materials for Ultrahigh Superprotonic Conductivities of 10
    Chand S; Elahi SM; Pal A; Das MC
    Chemistry; 2019 May; 25(25):6259-6269. PubMed ID: 30677177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton Conductivity via Trapped Water in Phosphonate-Based Metal-Organic Frameworks Synthesized in Aqueous Media.
    Afrin U; Mian MR; Otake KI; Drout RJ; Redfern LR; Horike S; Islamoglu T; Farha OK
    Inorg Chem; 2021 Jan; 60(2):1086-1091. PubMed ID: 33412005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multifunctional anionic metal-organic framework for high proton conductivity and photoreduction of CO
    Sun HX; Wang HN; Fu YM; Meng X; He YO; Yang RG; Zhou Z; Su ZM
    Dalton Trans; 2022 Mar; 51(12):4798-4805. PubMed ID: 35253826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy.
    Zhang J; He X; Kong YR; Luo HB; Liu M; Liu Y; Ren XM
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37231-37238. PubMed ID: 34324287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor.
    Liu QQ; Liu SS; Liu XF; Xu XJ; Dong XY; Zhang HJ; Zang SQ
    Inorg Chem; 2022 Feb; 61(8):3406-3411. PubMed ID: 35170960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Amphibious Superprotonic Conductivity in a Cu
    Khatua S; Bar AK; Sheikh JA; Clearfield A; Konar S
    Chemistry; 2018 Jan; 24(4):872-880. PubMed ID: 29064595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Proton Conductivity in Fe-Metal-Organic Frameworks by Postsynthetic Oxidation and High-Performance Hybrid Membranes with Low Acidity.
    Wen T; Shao Z; Wang H; Zhao Y; Cui Y; Hou H
    Inorg Chem; 2021 Dec; 60(24):18889-18898. PubMed ID: 34883019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Void Space versus Surface Functionalization for Proton Conduction in Metal-Organic Frameworks.
    Sarango-Ramírez MK; Park J; Kim J; Yoshida Y; Lim DW; Kitagawa H
    Angew Chem Int Ed Engl; 2021 Sep; 60(37):20173-20177. PubMed ID: 34009706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trojan Horse Thiocyanate: Induction and Control of High Proton Conductivity in CPO-27/MOF-74 Metal-Organic Frameworks by Metal Selection and Solvent-Free Mechanochemical Dosing.
    Lupa M; Kozyra P; Jajko G; Matoga D
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29820-29826. PubMed ID: 34137584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porphyrinylphosphonate-Based Metal-Organic Framework: Tuning Proton Conductivity by Ligand Design.
    Yu Enakieva Y; Sinelshchikova AA; Grigoriev MS; Chernyshev VV; Kovalenko KA; Stenina IA; Yaroslavtsev AB; Gorbunova YG; Yu Tsivadze A
    Chemistry; 2021 Jan; 27(5):1598-1602. PubMed ID: 33017090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-Organic Frameworks as a Versatile Platform for Proton Conductors.
    Ye Y; Gong L; Xiang S; Zhang Z; Chen B
    Adv Mater; 2020 May; 32(21):e1907090. PubMed ID: 32243018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.