BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 35098712)

  • 1. Overcoming Acidic H
    Zhang T; Wen Y; Pan Z; Kuwahara Y; Mori K; Yamashita H; Zhao Y; Qian X
    Environ Sci Technol; 2022 Feb; 56(4):2617-2625. PubMed ID: 35098712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming waste brake pads from automobiles into Nano-Catalyst: Synergistic Fe-C-Cu triple sites for efficient fenton-like oxidation of organic pollutants.
    Qi F; Peng J; Liang Z; Guo J; Yin J; Song A; Li Z; Liu J; Fang T; Zhang J; Wu L; Zhang Q; Wang T; Du Z; Mao H
    Waste Manag; 2024 Mar; 175():225-234. PubMed ID: 38218093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar.
    Liu G; Zhang Y; Yu H; Jin R; Zhou J
    J Hazard Mater; 2020 Oct; 397():122783. PubMed ID: 32361143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N,S-codoped biochar outperformed N-doped biochar on co-activation of H
    Lai M; Li J; Li H; Gui Y; Lü J
    Environ Pollut; 2023 Oct; 334():122208. PubMed ID: 37454716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating Fe
    Mao Y; Wang P; Zhang D; Xia Y; Li Y; Zeng W; Zhan S; Crittenden JC
    Environ Sci Technol; 2021 Oct; 55(19):13326-13334. PubMed ID: 34524793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A self-sufficient photo-Fenton system with coupling in-situ production H
    Shi W; Sun W; Liu Y; Zhang K; Sun H; Lin X; Hong Y; Guo F
    J Hazard Mater; 2022 Aug; 436():129141. PubMed ID: 35594677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of iron-loaded granular activated carbon used as heterogeneous fenton catalyst for degradation of tetracycline.
    He Z; Xu X; Wang B; Lu Z; Shi D; Wu W
    J Environ Manage; 2022 Nov; 322():116077. PubMed ID: 36055098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal carbons/ferrihydrite heterogeneous Fenton catalysts with low H
    Zhu Y; Xie Q; Zhu R; Lv Y; Xi Y; Zhu J; Fan J
    Chemosphere; 2022 Jan; 287(Pt 1):131933. PubMed ID: 34461329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent free radicals in biochar enhance superoxide-mediated Fe(III)/Fe(II) cycling and the efficacy of CaO
    Zhang S; Wei Y; Metz J; He S; Alvarez PJJ; Long M
    J Hazard Mater; 2022 Jan; 421():126805. PubMed ID: 34388929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supplementation of tea polyphenols in sludge Fenton oxidation improves sludge dewaterability and reduces chemicals consumption.
    Tao N; Hu L; Fang D; Tarabara V; Zhou L
    Water Res; 2022 Jun; 218():118512. PubMed ID: 35500327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced degradation of tetracycline over FeS-based Fenton-like process: Autocatalytic decomposition of H
    Cai Y; Fan J; Liu Z
    J Hazard Mater; 2022 Aug; 436():129092. PubMed ID: 35596995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide mediated Fe(III) reduction for enhancing Fe(III)/H
    Cheng F; Zhou P; Liu Y; Huo X; Zhang J; Yuan Y; Zhang H; Lai B; Zhang Y
    Sci Total Environ; 2021 Nov; 797():149097. PubMed ID: 34298366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering controllable oxygen vacancy defects in iron hydroxide oxide immobilized on reduced graphene oxide for boosting visible light-driven photo-Fenton-like oxidation.
    Wu X; Liu T; Ni W; Yang H; Huang H; He S; Li C; Ning H; Wu W; Zhao Q; Wu M
    J Colloid Interface Sci; 2022 Oct; 623():9-20. PubMed ID: 35561576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-doped carbon nanotubes enhanced Fenton chemistry: Role of near-free iron(III) for sustainable iron(III)/iron(II) cycles.
    Zhou C; Zhou P; Sun M; Liu Y; Zhang H; Xiong Z; Liang J; Duan X; Lai B
    Water Res; 2022 Feb; 210():117984. PubMed ID: 34959068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mn(II) Acceleration of the Picolinic Acid-Assisted Fenton Reaction: New Insight into the Role of Manganese in Homogeneous Fenton AOPs.
    Yang Z; Shan C; Pignatello JJ; Pan B
    Environ Sci Technol; 2022 May; 56(10):6621-6630. PubMed ID: 35502893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into Sb(III) and Fe(II) co-oxidation by oxygen and hydrogen peroxide: Dominant reactive oxygen species and roles of organic ligands.
    Wang Y; Kong L; He M; Lin C; Ouyang W; Liu X; Peng X
    Water Res; 2023 Aug; 242():120296. PubMed ID: 37413752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of norfloxacin by MOF-derived lamellar carbon nanocomposites based on microwave-driven Fenton reaction: Improved Fe(III)/Fe(II) cycle.
    Wang Y; Wang R; Lin N; Xu J; Liu X; Liu N; Zhang X
    Chemosphere; 2022 Apr; 293():133614. PubMed ID: 35032514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant enhancement of photo-Fenton degradation of ofloxacin over Fe-Dis@Sep due to highly dispersed FeC
    Tian Y; He X; Chen W; Tian X; Nie Y; Han B; Lin HM; Yang C; Wang Y
    Sci Total Environ; 2020 Jun; 723():138144. PubMed ID: 32224407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.