BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 35098712)

  • 21. Room-temperature preparation of highly efficient NH
    Huang P; Yao L; Chang Q; Sha Y; Jiang G; Zhang S; Li Z
    Chemosphere; 2022 Mar; 291(Pt 3):133026. PubMed ID: 34822869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EDTA-Fe(III) Fenton-like oxidation for the degradation of malachite green.
    Hu Y; Li Y; He J; Liu T; Zhang K; Huang X; Kong L; Liu J
    J Environ Manage; 2018 Nov; 226():256-263. PubMed ID: 30121461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CaO
    Pan Y; Su H; Zhu Y; Vafaei Molamahmood H; Long M
    Water Res; 2018 Nov; 145():731-740. PubMed ID: 30216867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defective iron based metal-organic frameworks derived from zero-valent iron for highly efficient fenton-like catalysis.
    Duan L; Jiang H; Wu W; Lin D; Yang K
    J Hazard Mater; 2023 Mar; 445():130426. PubMed ID: 36462241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic activity and mechanism of typical iron-based catalysts for Fenton-like oxidation.
    Liu X; Yao Y; Lu J; Zhou J; Chen Q
    Chemosphere; 2023 Jan; 311(Pt 1):136972. PubMed ID: 36283427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition.
    Bolobajev J; Trapido M; Goi A
    Chemosphere; 2016 Jun; 153():220-6. PubMed ID: 27016818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron boride boosted Fenton oxidation: Boron species induced sustainable Fe
    Zhang Y; Zhou P; Huang R; Zhou C; Liu Y; Zhang H; Huo X; Zhao J; Xiong Z; Lai B
    J Hazard Mater; 2023 Feb; 443(Pt B):130386. PubMed ID: 36444072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ferryl Ion in the Photo-Fenton Process at Acidic pH: Occurrence, Fate, and Implications.
    Deng G; Wang Z; Ma J; Jiang J; He D; Li X; Szczuka A; Zhang Z
    Environ Sci Technol; 2023 Nov; 57(47):18586-18596. PubMed ID: 36912755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing Fenton-like process at neutral pH by Fe(III)-GLDA complexation for the oxidation removal of organic pollutants.
    Ren H; He F; Liu S; Li T; Zhou R
    J Hazard Mater; 2021 Aug; 416():126077. PubMed ID: 34492897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-oxidation of As(III) and Fe(II) by oxygen through complexation between As(III) and Fe(II)/Fe(III) species.
    Ding W; Xu J; Chen T; Liu C; Li J; Wu F
    Water Res; 2018 Oct; 143():599-607. PubMed ID: 30025352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide precipitates catastrophic chromosome fragmentation by bolstering both hydrogen peroxide and Fe(II) Fenton reactants in E. coli.
    Agashe P; Kuzminov A
    J Biol Chem; 2022 Apr; 298(4):101825. PubMed ID: 35288189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox property of coordinated iron ion enables activation of O
    Gao Y; Wang P; Chu Y; Kang F; Cheng Y; Repo E; Feng M; Yu X; Zeng H
    Water Res; 2024 Jan; 248():120826. PubMed ID: 37976952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects.
    Liu Y; Zhao Y; Wang J
    J Hazard Mater; 2021 Feb; 404(Pt B):124191. PubMed ID: 33069993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Waste leather derived porous carbon boosted Fenton oxidation towards removal of diethyl phthalate: Mechanism and long-lasting performance.
    Lv X; Zhou C; Shen Z; Zhang Y; He C; Du Y; Xiong Z; Huang R; Zhou P; Lai B
    J Hazard Mater; 2023 Sep; 458():132040. PubMed ID: 37451102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced sulfur accelerates Fe(III)/Fe(II) recycling in FeS
    Jiang S; Han Y; Sun B; Zeng L; Gong J
    Chemosphere; 2024 Apr; 353():141588. PubMed ID: 38430939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of real wastewater oxidation with Fenton/Fenton-like and persulfate activated by NaOH and Fe(II).
    Rodríguez S; Lorenzo D; Santos A; Romero A
    J Environ Manage; 2020 Feb; 255():109926. PubMed ID: 32063307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. P-cresol degradation through Fe(III)-EDDS/H
    Xiao M; Qi Y; Feng Q; Li K; Fan K; Huang T; Qu P; Gai H; Song H
    Chemosphere; 2021 Apr; 269():129436. PubMed ID: 33385667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accelerated oxidation of 2,4,6-trichlorophenol in Cu(II)/H
    Wang Z; Liu Q; Yang F; Huang Y; Xue Y; Yuan R; Sheng B; Wang X
    Environ Int; 2019 Nov; 132():105128. PubMed ID: 31479958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: Linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle.
    Yatagai T; Ohkawa Y; Kubo D; Kawase Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(1):74-83. PubMed ID: 27726493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.