BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35098863)

  • 1. Species-dependent hepatic and intestinal metabolism of selective oestrogen receptor degrader LSZ102 by sulphation and glucuronidation.
    Pearson D; Jin Y; Romeo A; Birlinger BL; Schiller H; Ji Y; Gunduz M; Baldoni D; Walles M
    Xenobiotica; 2022 Jan; 52(1):26-37. PubMed ID: 35098863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Phase I Study of LSZ102, an Oral Selective Estrogen Receptor Degrader, with or without Ribociclib or Alpelisib, in Patients with Estrogen Receptor-Positive Breast Cancer.
    Jhaveri K; Juric D; Yap YS; Cresta S; Layman RM; Duhoux FP; Terret C; Takahashi S; Huober J; Kundamal N; Sheng Q; Balbin A; Ji Y; He W; Crystal A; De Vita S; Curigliano G
    Clin Cancer Res; 2021 Nov; 27(21):5760-5770. PubMed ID: 34433648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preclinical pharmacokinetics and metabolism of MAK683, a clinical stage selective oral embryonic ectoderm development (EED) inhibitor for cancer treatment.
    Zhang JYJ; Zhang J; Kiffe M; Walles M; Jin Y; Blanz J; Dayer J; Sanchez A; Zhang C; Zhang L; Huang Y; Oyang C
    Xenobiotica; 2022 Jan; 52(1):65-78. PubMed ID: 34761729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of LSZ102, a Potent, Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) for the Treatment of Estrogen Receptor Positive Breast Cancer.
    Tria GS; Abrams T; Baird J; Burks HE; Firestone B; Gaither LA; Hamann LG; He G; Kirby CA; Kim S; Lombardo F; Macchi KJ; McDonnell DP; Mishina Y; Norris JD; Nunez J; Springer C; Sun Y; Thomsen NM; Wang C; Wang J; Yu B; Tiong-Yip CL; Peukert S
    J Med Chem; 2018 Apr; 61(7):2837-2864. PubMed ID: 29562737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples.
    Brand W; Boersma MG; Bik H; Hoek-van den Hil EF; Vervoort J; Barron D; Meinl W; Glatt H; Williamson G; van Bladeren PJ; Rietjens IM
    Drug Metab Dispos; 2010 Apr; 38(4):617-25. PubMed ID: 20056724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucuronidation and sulfation of 7-hydroxycoumarin in liver matrices from human, dog, monkey, rat, and mouse.
    Wang Q; Jia R; Ye C; Garcia M; Li J; Hidalgo IJ
    In Vitro Cell Dev Biol Anim; 2005; 41(3-4):97-103. PubMed ID: 16029080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of cryptolepine metabolites in rat and human hepatocytes and metabolism and pharmacokinetics of cryptolepine in Sprague Dawley rats.
    Forkuo AD; Ansah C; Pearson D; Gertsch W; Cirello A; Amaral A; Spear J; Wright CW; Rynn C
    BMC Pharmacol Toxicol; 2017 Dec; 18(1):84. PubMed ID: 29273084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple UDP-Glucuronosyltransferase and Sulfotransferase Enzymes are Responsible for the Metabolism of Verproside in Human Liver Preparations.
    Kim JH; Hwang DK; Moon JY; Lee Y; Yoo JS; Shin DH; Lee HS
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28441724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of MK-0524, a prostaglandin D2 receptor 1 antagonist, in microsomes and hepatocytes from preclinical species and humans.
    Dean BJ; Chang S; Silva Elipe MV; Xia YQ; Braun M; Soli E; Zhao Y; Franklin RB; Karanam B
    Drug Metab Dispos; 2007 Feb; 35(2):283-92. PubMed ID: 17132765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro hepatic metabolism of cediranib, a potent vascular endothelial growth factor tyrosine kinase inhibitor: interspecies comparison and human enzymology.
    Schulz-Utermoehl T; Spear M; Pollard CR; Pattison C; Rollison H; Sarda S; Ward M; Bushby N; Jordan A; Harrison M
    Drug Metab Dispos; 2010 Oct; 38(10):1688-97. PubMed ID: 20634336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism, pharmacokinetics, and bioavailability of ZB716, a Steroidal Selective Estrogen Receptor Downregulator (SERD).
    Zhang C; Guo S; Yang L; Liu J; Zheng S; Zhong Q; Zhang Q; Wang G
    Oncotarget; 2017 Nov; 8(61):103874-103889. PubMed ID: 29262607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Catalposide Metabolites in Human Liver and Intestinal Preparations and Characterization of the Relevant Sulfotransferase, UDP-glucuronosyltransferase, and Carboxylesterase Enzymes.
    Hwang DK; Kim JH; Shin Y; Choi WG; Kim S; Cho YY; Lee JY; Kang HC; Lee HS
    Pharmaceutics; 2019 Jul; 11(7):. PubMed ID: 31336576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro drug metabolism of green tea catechins in human, monkey, dog, rat and mouse hepatocytes.
    Chen WW; Qin GY; Zhang T; Feng WY
    Drug Metab Lett; 2012 Jun; 6(2):73-93. PubMed ID: 22594564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated system exposures of baicalin after combinatory oral administration of rhein and baicalin: Mainly related to breast cancer resistance protein (ABCG2), not UDP-glucuronosyltransferases.
    Zhang Y; Zhang M; Hu G; Zhang Z; Song R
    J Ethnopharmacol; 2020 Mar; 250():112528. PubMed ID: 31884038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism and cytotoxicity of chlorpropham (CIPC) and its essential metabolites in isolated rat hepatocytes during a partial inhibition of sulphation and glucuronidation reactions: a comparative study.
    Carrera G; Alary J; Melgar MJ; Lamboeuf Y; Pipy B
    Arch Environ Contam Toxicol; 1998 Jul; 35(1):89-96. PubMed ID: 9601925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats.
    Liu YT; Hao HP; Xie HG; Lai L; Wang Q; Liu CX; Wang GJ
    Drug Metab Dispos; 2010 Oct; 38(10):1779-84. PubMed ID: 20634337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of intestinal glucuronidation in limiting hepatic exposure and bioactivation of raloxifene in humans and rats.
    Dalvie D; Kang P; Zientek M; Xiang C; Zhou S; Obach RS
    Chem Res Toxicol; 2008 Dec; 21(12):2260-71. PubMed ID: 19548350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro studies of intestinal permeability and hepatic and intestinal metabolism of 8-prenylnaringenin, a potent phytoestrogen from hops (Humulus lupulus L.).
    Nikolic D; Li Y; Chadwick LR; van Breemen RB
    Pharm Res; 2006 May; 23(5):864-72. PubMed ID: 16715376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic characterization of (±)-praeruptorin A in vitro and in vivo by high performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry.
    Song YL; Jing WH; Yan R; Wang YT
    J Pharm Biomed Anal; 2014 Mar; 90():98-110. PubMed ID: 24342524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intestinal glucuronidation metabolism may have a greater impact on oral bioavailability than hepatic glucuronidation metabolism in humans: a study with raloxifene, substrate for UGT1A1, 1A8, 1A9, and 1A10.
    Mizuma T
    Int J Pharm; 2009 Aug; 378(1-2):140-1. PubMed ID: 19486934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.