These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35098995)

  • 21. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering.
    Sun M; Lan SL
    J Exp Biol; 2004 May; 207(Pt 11):1887-901. PubMed ID: 15107443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
    Zheng L; Hedrick TL; Mittal R
    PLoS One; 2013; 8(1):e53060. PubMed ID: 23341923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerodynamic effects of deviating motion of flapping wings in hovering flight.
    Kim HY; Han JS; Han JH
    Bioinspir Biomim; 2019 Feb; 14(2):026006. PubMed ID: 30616233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The reverse flight of a monarch butterfly (
    Bode-Oke AT; Dong H
    J R Soc Interface; 2020 Jun; 17(167):20200268. PubMed ID: 32574538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Power requirements for bat-inspired flapping flight with heavy, highly articulated and cambered wings.
    Fan X; Swartz S; Breuer K
    J R Soc Interface; 2022 Sep; 19(194):20220315. PubMed ID: 36128710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of abdomen undulation in energy consumption and stability for monarch butterfly.
    Tejaswi KC; Sridhar MK; Kang CK; Lee T
    Bioinspir Biomim; 2021 May; 16(4):. PubMed ID: 33242851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
    Park H; Choi H
    Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deformable model of a butterfly in motion on the example of Attacus atlas.
    Kunicka-Kowalska Z; Landowski M; Sibilski K
    J Mech Behav Biomed Mater; 2022 Sep; 133():105351. PubMed ID: 35839632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lift enhancement of a butterfly-like flapping wing vehicle by reinforcement learning algorithm.
    Xiong M; Wei Z; Yang Y; Chen Q; Liu X
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37160126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.
    Lentink D; Haselsteiner AF; Ingersoll R
    J R Soc Interface; 2015 Mar; 12(104):20141283. PubMed ID: 25589565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenomenology and scaling of optimal flapping wing kinematics.
    Gehrke A; Mulleners K
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33264765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hawkmoths regulate flight torques with their abdomen for yaw control.
    Le V; Cellini B; Schilder R; Mongeau JM
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 36995279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative analysis of deformation behaviors of dragonfly wing under aerodynamic and inertial forces.
    Hou D; Zhong Z
    Comput Biol Med; 2022 Jun; 145():105421. PubMed ID: 35366473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.
    Slegers N; Heilman M; Cranford J; Lang A; Yoder J; Habegger ML
    Bioinspir Biomim; 2017 Jan; 12(1):016013. PubMed ID: 28000615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tensile mechanical properties and finite element simulation of the wings of the butterfly Tirumala limniace.
    Shen H; Ji A; Li Q; Li X; Ma Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):239-251. PubMed ID: 35840718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flying in reverse: kinematics and aerodynamics of a dragonfly in backward free flight.
    Bode-Oke AT; Zeyghami S; Dong H
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29950513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.