BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35099170)

  • 1. Modification and Characterization of Interfacial Bonding for Thermal Management of Ruthenium Interconnects in Next-Generation Very-Large-Scale Integration Circuits.
    Zhan T; Sahara K; Takeuchi H; Yokogawa R; Oda K; Jin Z; Deng S; Tomita M; Wu YJ; Xu Y; Matsuki T; Wang H; Song M; Guan S; Ogura A; Watanabe T
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):7392-7404. PubMed ID: 35099170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Thermal Boundary Resistance between the Interconnect Metal and Dielectric Interlayer on Temperature Increase of Interconnects in Deeply Scaled VLSI.
    Zhan T; Oda K; Ma S; Tomita M; Jin Z; Takezawa H; Mesaki K; Wu YJ; Xu Y; Matsukawa T; Matsuki T; Watanabe T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22347-22356. PubMed ID: 32315529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the Thermal Boundary Resistance in Metal/Dielectric Thermally Conductive Layers on Power Generation of Silicon Nanowire Microthermoelectric Generators.
    Zhan T; Ma S; Jin Z; Takezawa H; Mesaki K; Tomita M; Wu YJ; Xu Y; Matsukawa T; Matsuki T; Watanabe T
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34441-34450. PubMed ID: 32635712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seedless Cu Electroplating on Ru-W Thin Films for Metallisation of Advanced Interconnects.
    Santos RF; Oliveira BMC; Savaris LCG; Ferreira PJ; Vieira MF
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent-bonding-induced strong phonon scattering in the atomically thin WSe
    Choi YG; Jeong DG; Ju HI; Roh CJ; Kim G; Mun BS; Kim TY; Kim SW; Lee JS
    Sci Rep; 2019 May; 9(1):7612. PubMed ID: 31110268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Ru passivation and doping on the barrier and seed layer properties of Ru-modified TaN for copper interconnects.
    Kondati Natarajan S; Nies CL; Nolan M
    J Chem Phys; 2020 Apr; 152(14):144701. PubMed ID: 32295379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Characterization of Metal-Oxide Interfaces Using Time-Domain Thermoreflectance with Nanograting Transducers.
    Kwon H; Perez C; Park W; Asheghi M; Goodson KE
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):58059-58065. PubMed ID: 34797056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amorphous Ta
    An BS; Kwon Y; Oh JS; Lee M; Pae S; Yang CW
    Sci Rep; 2019 Dec; 9(1):20132. PubMed ID: 31882921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Formation of a Ru/ZnO Multifunctional Bilayer for the Next-Generation Interconnect Technology via Area-Selective Atomic Layer Deposition.
    Mori Y; Cheon T; Kotsugi Y; Kim YH; Park Y; Ansari MZ; Mohapatra D; Jang Y; Bae JS; Kwon W; Kim G; Park YB; Lee HB; Song W; Kim SH
    Small; 2023 Aug; 19(34):e2300290. PubMed ID: 37127866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic Thermal Boundary Resistance across 2D Black Phosphorus: Experiment and Atomistic Modeling of Interfacial Energy Transport.
    Li M; Kang JS; Nguyen HD; Wu H; Aoki T; Hu Y
    Adv Mater; 2019 Aug; 31(33):e1901021. PubMed ID: 31231881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the Cu morphology on Ru-passivated and Ru-doped TaN surfaces - promoting growth of 2D conducting copper for CMOS interconnects.
    Nies CL; Natarajan SK; Nolan M
    Chem Sci; 2022 Jan; 13(3):713-725. PubMed ID: 35173936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-W Barrier Layers for Metallization of Copper Interconnects: Thermal Performance Analysis.
    Oliveira BMC; Santos RF; Piedade AP; Ferreira PJ; Vieira MF
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Layer Deposition of Ruthenium with TiN Interface for Sub-10 nm Advanced Interconnects beyond Copper.
    Wen LG; Roussel P; Pedreira OV; Briggs B; Groven B; Dutta S; Popovici MI; Heylen N; Ciofi I; Vanstreels K; Østerberg FW; Hansen O; Petersen DH; Opsomer K; Detavernie C; Wilson CJ; Elshocht SV; Croes K; Bömmels J; Tőkei Z; Adelmann C
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26119-26125. PubMed ID: 27598509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Interface Enhancement via Inclusion of an Adhesive Layer Using Plasma-Enhanced Atomic Layer Deposition.
    Kwon H; Perez C; Kim HK; Asheghi M; Park W; Goodson KE
    ACS Appl Mater Interfaces; 2021 May; 13(18):21905-21913. PubMed ID: 33914509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal stability of atomic layer deposited Ru layer on Si and TaN/Si for barrier application of Cu interconnection.
    Shin DC; Kim MR; Lee JH; Choi BH; Lee HK
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5631-7. PubMed ID: 22966623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying Interfacial Bonding Using Thermal Boundary Conductance at Cubic Boron Nitride/Copper Interfaces with a Large Mismatch of Phonon Density of States.
    Chen N; Yang K; Wang Z; Zhong B; Wang J; Song J; Li Q; Ni J; Sun F; Liu Y; Fan T
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34132-34144. PubMed ID: 37405384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Properties of Cu Thin Films on Ru Depending on the ALD Temperature.
    Yoon HC; Shin JH; Park HS; Suh SJ
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1601-4. PubMed ID: 26353698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sacrificial adhesion promotion layers for copper metallization of device structures.
    Zong Y; Shan X; Watkins JJ
    Langmuir; 2004 Oct; 20(21):9210-6. PubMed ID: 15461508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking Interfacial Bonding and Thermal Conductivity in Molecularly-Confined Polymer-Glass Nanocomposites with Ultra-High Interfacial Density.
    Wang Y; Collinson DW; Kwon H; Miller RD; Lionti K; Goodson KE; Dauskardt RH
    Small; 2023 Jul; 19(28):e2301383. PubMed ID: 36971287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Mapping of Thermal Boundary Conductance at Metal-Molybdenum Diselenide Interfaces.
    Brown DB; Shen W; Li X; Xiao K; Geohegan DB; Kumar S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14418-14426. PubMed ID: 30896146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.