These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35099170)

  • 41. Fabrication of a Bilayer Structure of Cu and Polyimide To Realize Circuit Microminiaturization and High Interfacial Adhesion in Flexible Electronic Devices.
    Kubo Y; Tanaka H; Saito Y; Mizoguchi A
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44589-44602. PubMed ID: 30507162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance.
    Cheng Z; Mu F; Ji X; You T; Xu W; Suga T; Ou X; Cahill DG; Graham S
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31843-31851. PubMed ID: 34191480
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-Temperature Co-hydroxylated Cu/SiO
    Kang Q; Wang C; Zhou S; Li G; Lu T; Tian Y; He P
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38866-38876. PubMed ID: 34318673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Covalent bonding modulated graphene-metal interfacial thermal transport.
    Jiang T; Zhang X; Vishwanath S; Mu X; Kanzyuba V; Sokolov DA; Ptasinska S; Go DB; Xing HG; Luo T
    Nanoscale; 2016 Jun; 8(21):10993-1001. PubMed ID: 27174416
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of interface thermal boundary resistance in the overall thermal conductivity of Si-Ge multilayered structures.
    Samvedi V; Tomar V
    Nanotechnology; 2009 Sep; 20(36):365701. PubMed ID: 19687536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of angle-resolved X-ray photon electron spectroscopy for interface and layer growth studies demonstrated on Ti/Ta-based films deposited on SiO2.
    Oswald S; Oswald F
    Anal Bioanal Chem; 2010 Apr; 396(8):2805-12. PubMed ID: 20333507
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Area-Selective ALD of Ru on Nanometer-Scale Cu Lines through Dimerization of Amino-Functionalized Alkoxy Silane Passivation Films.
    Zyulkov I; Madhiwala V; Voronina E; Snelgrove M; Bogan J; O'Connor R; De Gendt S; Armini S
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4678-4688. PubMed ID: 31913003
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancing Interconnect Reliability and Performance by Converting Tantalum to 2D Layered Tantalum Sulfide at Low Temperature.
    Lo CL; Catalano M; Khosravi A; Ge W; Ji Y; Zemlyanov DY; Wang L; Addou R; Liu Y; Wallace RM; Kim MJ; Chen Z
    Adv Mater; 2019 Jul; 31(30):e1902397. PubMed ID: 31183907
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electron-phonon interaction and thermal boundary resistance at the interfaces of Ge2Sb2Te5 with metals and dielectrics.
    Campi D; Baldi E; Graceffa G; Sosso GC; Bernasconi M
    J Phys Condens Matter; 2015 May; 27(17):175009. PubMed ID: 25873568
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermal Boundary Characteristics of Homo-/Heterogeneous Interfaces.
    Heijmans K; Pathak AD; Solano-López P; Giordano D; Nedea S; Smeulders D
    Nanomaterials (Basel); 2019 Apr; 9(5):. PubMed ID: 31035519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of Scaling Effect for Emerging Nanoscale Interconnect Materials.
    Zhao K; Hu Y; Du G; Zhao Y; Dong J
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630982
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-Objective Optimization for Rapid Identification of Novel Compound Metals for Interconnect Applications.
    Ramdas A; Zhou G; Li Y; Lu PL; Antoniuk ER; Reed EJ; Hinkle CL; da Jornada FH
    Small; 2024 Apr; ():e2308784. PubMed ID: 38593360
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of thermal boundary resistance by the machine learning method.
    Zhan T; Fang L; Xu Y
    Sci Rep; 2017 Aug; 7(1):7109. PubMed ID: 28769034
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of chemical bonding on heat transport across interfaces.
    Losego MD; Grady ME; Sottos NR; Cahill DG; Braun PV
    Nat Mater; 2012 Apr; 11(6):502-6. PubMed ID: 22522593
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unleashing the Power of 2D MoS
    Feng PH; Hsiao KY; Jhan DJ; Chen YL; Keng PY; Chang SY; Lu MY
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48543-48550. PubMed ID: 37792701
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tuning sample length effect on mass transport in current carrying Cu-Si thin-film systems via interfacial engineering.
    Somaiah N; Kumar P
    Nanotechnology; 2019 Nov; 30(48):485704. PubMed ID: 31434059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si.
    Hsieh SH; Chen WJ; Chien CM
    Nanomaterials (Basel); 2015 Nov; 5(4):1840-1852. PubMed ID: 28347099
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular design of a highly matched and bonded interface achieves enhanced thermal boundary conductance.
    Wang S; Ren L; Han M; Zhou W; Wong C; Bai X; Sun R; Zeng X
    Nanoscale; 2023 May; 15(19):8706-8715. PubMed ID: 37009676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.