These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 35099268)
21. Isolation and Identification of Arif ED; Saeed NM; Rachid SK Pol J Microbiol; 2020; 69(1):1-7. PubMed ID: 32108450 [TBL] [Abstract][Full Text] [Related]
22. Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1. Webley WC; Norkin LC; Stuart ES BMC Infect Dis; 2004 Jul; 4():23. PubMed ID: 15271223 [TBL] [Abstract][Full Text] [Related]
23. The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens. Voigt A; Schöfl G; Saluz HP PLoS One; 2012; 7(4):e35097. PubMed ID: 22506068 [TBL] [Abstract][Full Text] [Related]
24. Septins arrange F-actin-containing fibers on the Chlamydia trachomatis inclusion and are required for normal release of the inclusion by extrusion. Volceanov L; Herbst K; Biniossek M; Schilling O; Haller D; Nölke T; Subbarayal P; Rudel T; Zieger B; Häcker G mBio; 2014 Oct; 5(5):e01802-14. PubMed ID: 25293760 [TBL] [Abstract][Full Text] [Related]
25. Scholz J; Holland G; Laue M; Banhart S; Heuer D mBio; 2024 Aug; 15(8):e0128824. PubMed ID: 39041785 [TBL] [Abstract][Full Text] [Related]
26. Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins. Scidmore-Carlson MA; Shaw EI; Dooley CA; Fischer ER; Hackstadt T Mol Microbiol; 1999 Aug; 33(4):753-65. PubMed ID: 10447885 [TBL] [Abstract][Full Text] [Related]
27. Host-pathogen interactions in specific pathogen-free chickens following aerogenous infection with Chlamydia psittaci and Chlamydia abortus. Kalmar I; Berndt A; Yin L; Chiers K; Sachse K; Vanrompay D Vet Immunol Immunopathol; 2015 Mar; 164(1-2):30-9. PubMed ID: 25638671 [TBL] [Abstract][Full Text] [Related]
28. The role of zoonotic chlamydial agents in ruminants abortion. Barati S; Moori-Bakhtiari N; Najafabadi MG; Momtaz H; Shokuhizadeh L Iran J Microbiol; 2017 Oct; 9(5):288-294. PubMed ID: 29296274 [TBL] [Abstract][Full Text] [Related]
29. Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes. Delevoye C; Nilges M; Dautry-Varsat A; Subtil A J Biol Chem; 2004 Nov; 279(45):46896-906. PubMed ID: 15316015 [TBL] [Abstract][Full Text] [Related]
30. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites. Dickinson MS; Anderson LN; Webb-Robertson BM; Hansen JR; Smith RD; Wright AT; Hybiske K PLoS Pathog; 2019 Apr; 15(4):e1007698. PubMed ID: 30943267 [TBL] [Abstract][Full Text] [Related]
31. Clinical identification and microbiota analysis of Xie G; Hu Q; Cao X; Wu W; Dai P; Guo W; Wang O; Wei L; Ren R; Li Y Front Cell Infect Microbiol; 2023; 13():1157540. PubMed ID: 37434780 [TBL] [Abstract][Full Text] [Related]
32. Effect of female sex hormones on the developmental cycle of Chlamydia abortus compared to a penicillin-induced model of persistent infection. Álvarez D; Caro MR; Buendía AJ; Schnee C; Ortega N; Murcia-Belmonte A; Salinas J BMC Vet Res; 2019 Jul; 15(1):259. PubMed ID: 31340824 [TBL] [Abstract][Full Text] [Related]
33. The inhibitory effect of flavonoids and their gut-derived metabolites on the replication of Chlamydia abortus in the AH-1 ovine trophoblast cell line. Del Río L; Salinas J; Buendía AJ; García-Conesa MT Res Vet Sci; 2019 Oct; 126():199-206. PubMed ID: 31539797 [TBL] [Abstract][Full Text] [Related]
34. Genotyping of Chlamydia abortus using multiple loci variable number of tandem repeats analysis technique. Barati S; Bakhtiari NM; Shokoohizadeh L; Ghorbanpoor M; Momtaz H BMC Vet Res; 2022 Jan; 18(1):54. PubMed ID: 35073930 [TBL] [Abstract][Full Text] [Related]
35. Seroprevalence and molecular characterization of Chlamydia abortus in frozen fetal and placental tissues of aborting ewes in northeastern Algeria. Hireche S; Ababneh MM; Bouaziz O; Boussena S Trop Anim Health Prod; 2016 Feb; 48(2):255-62. PubMed ID: 26526957 [TBL] [Abstract][Full Text] [Related]
36. Localization of intracellular Ca2+ stores in HeLa cells during infection with Chlamydia trachomatis. Majeed M; Krause KH; Clark RA; Kihlström E; Stendahl O J Cell Sci; 1999 Jan; 112 ( Pt 1)():35-44. PubMed ID: 9841902 [TBL] [Abstract][Full Text] [Related]
37. Chlamydiosis: seroepidemiologic survey in a red deer (Cervus elaphus) population in Italy. Di Francesco A; Donati M; Nicoloso S; Orlandi L; Baldelli R; Salvatore D; Sarli G; Cevenini R; Morandi F J Wildl Dis; 2012 Apr; 48(2):488-91. PubMed ID: 22493128 [TBL] [Abstract][Full Text] [Related]
38. Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA. Alzhanov D; Barnes J; Hruby DE; Rockey DD BMC Microbiol; 2004 Jul; 4():24. PubMed ID: 15230981 [TBL] [Abstract][Full Text] [Related]
39. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis. Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221 [TBL] [Abstract][Full Text] [Related]
40. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2. Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]