BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35099268)

  • 21. Isolation and Identification of
    Arif ED; Saeed NM; Rachid SK
    Pol J Microbiol; 2020; 69(1):1-7. PubMed ID: 32108450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1.
    Webley WC; Norkin LC; Stuart ES
    BMC Infect Dis; 2004 Jul; 4():23. PubMed ID: 15271223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens.
    Voigt A; Schöfl G; Saluz HP
    PLoS One; 2012; 7(4):e35097. PubMed ID: 22506068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Septins arrange F-actin-containing fibers on the Chlamydia trachomatis inclusion and are required for normal release of the inclusion by extrusion.
    Volceanov L; Herbst K; Biniossek M; Schilling O; Haller D; Nölke T; Subbarayal P; Rudel T; Zieger B; Häcker G
    mBio; 2014 Oct; 5(5):e01802-14. PubMed ID: 25293760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins.
    Scidmore-Carlson MA; Shaw EI; Dooley CA; Fischer ER; Hackstadt T
    Mol Microbiol; 1999 Aug; 33(4):753-65. PubMed ID: 10447885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Host-pathogen interactions in specific pathogen-free chickens following aerogenous infection with Chlamydia psittaci and Chlamydia abortus.
    Kalmar I; Berndt A; Yin L; Chiers K; Sachse K; Vanrompay D
    Vet Immunol Immunopathol; 2015 Mar; 164(1-2):30-9. PubMed ID: 25638671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of zoonotic chlamydial agents in ruminants abortion.
    Barati S; Moori-Bakhtiari N; Najafabadi MG; Momtaz H; Shokuhizadeh L
    Iran J Microbiol; 2017 Oct; 9(5):288-294. PubMed ID: 29296274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes.
    Delevoye C; Nilges M; Dautry-Varsat A; Subtil A
    J Biol Chem; 2004 Nov; 279(45):46896-906. PubMed ID: 15316015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites.
    Dickinson MS; Anderson LN; Webb-Robertson BM; Hansen JR; Smith RD; Wright AT; Hybiske K
    PLoS Pathog; 2019 Apr; 15(4):e1007698. PubMed ID: 30943267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinical identification and microbiota analysis of
    Xie G; Hu Q; Cao X; Wu W; Dai P; Guo W; Wang O; Wei L; Ren R; Li Y
    Front Cell Infect Microbiol; 2023; 13():1157540. PubMed ID: 37434780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of female sex hormones on the developmental cycle of Chlamydia abortus compared to a penicillin-induced model of persistent infection.
    Álvarez D; Caro MR; Buendía AJ; Schnee C; Ortega N; Murcia-Belmonte A; Salinas J
    BMC Vet Res; 2019 Jul; 15(1):259. PubMed ID: 31340824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The inhibitory effect of flavonoids and their gut-derived metabolites on the replication of Chlamydia abortus in the AH-1 ovine trophoblast cell line.
    Del Río L; Salinas J; Buendía AJ; García-Conesa MT
    Res Vet Sci; 2019 Oct; 126():199-206. PubMed ID: 31539797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genotyping of Chlamydia abortus using multiple loci variable number of tandem repeats analysis technique.
    Barati S; Bakhtiari NM; Shokoohizadeh L; Ghorbanpoor M; Momtaz H
    BMC Vet Res; 2022 Jan; 18(1):54. PubMed ID: 35073930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seroprevalence and molecular characterization of Chlamydia abortus in frozen fetal and placental tissues of aborting ewes in northeastern Algeria.
    Hireche S; Ababneh MM; Bouaziz O; Boussena S
    Trop Anim Health Prod; 2016 Feb; 48(2):255-62. PubMed ID: 26526957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localization of intracellular Ca2+ stores in HeLa cells during infection with Chlamydia trachomatis.
    Majeed M; Krause KH; Clark RA; Kihlström E; Stendahl O
    J Cell Sci; 1999 Jan; 112 ( Pt 1)():35-44. PubMed ID: 9841902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chlamydiosis: seroepidemiologic survey in a red deer (Cervus elaphus) population in Italy.
    Di Francesco A; Donati M; Nicoloso S; Orlandi L; Baldelli R; Salvatore D; Sarli G; Cevenini R; Morandi F
    J Wildl Dis; 2012 Apr; 48(2):488-91. PubMed ID: 22493128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA.
    Alzhanov D; Barnes J; Hruby DE; Rockey DD
    BMC Microbiol; 2004 Jul; 4():24. PubMed ID: 15230981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2.
    Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High frequency of chlamydial co-infections in clinically healthy sheep flocks.
    Lenzko H; Moog U; Henning K; Lederbach R; Diller R; Menge C; Sachse K; Sprague LD
    BMC Vet Res; 2011 Jun; 7():29. PubMed ID: 21679409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.