BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 35099818)

  • 1. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome-editing toolkit to enhance salt stress tolerance in rice and wheat.
    Nazir R; Mandal S; Mitra S; Ghorai M; Das N; Jha NK; Majumder M; Pandey DK; Dey A
    Physiol Plant; 2022 Mar; 174(2):e13642. PubMed ID: 35099818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets.
    Numan M; Serba DD; Ligaba-Osena A
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.).
    Khan I; Khan S; Zhang Y; Zhou J; Akhoundian M; Jan SA
    Mol Biol Rep; 2021 Apr; 48(4):3605-3615. PubMed ID: 33950408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review.
    Elsharawy H; Refat M
    Funct Integr Genomics; 2023 Aug; 23(3):265. PubMed ID: 37541970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Editing in Cereals: Approaches, Applications and Challenges.
    Ansari WA; Chandanshive SU; Bhatt V; Nadaf AB; Vats S; Katara JL; Sonah H; Deshmukh R
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives.
    Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY
    Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Editing the genome of common cereals (Rice and Wheat): techniques, applications, and industrial aspects.
    Das N; Ghosh Dhar D; Dhar P
    Mol Biol Rep; 2023 Jan; 50(1):739-747. PubMed ID: 36309609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR enables sustainable cereal production for a greener future.
    Ahmar S; Usman B; Hensel G; Jung KH; Gruszka D
    Trends Plant Sci; 2024 Feb; 29(2):179-195. PubMed ID: 37981496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome edited wheat- current advances for the second green revolution.
    Awan MJA; Pervaiz K; Rasheed A; Amin I; Saeed NA; Dhugga KS; Mansoor S
    Biotechnol Adv; 2022 Nov; 60():108006. PubMed ID: 35732256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance.
    Maharajan T; Krishna TPA; Rakkammal K; Ceasar SA; Ramesh M
    Planta; 2022 Nov; 256(6):106. PubMed ID: 36326904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of the CRISPR/Cas9 System for Rice Grain Quality Improvement: Perspectives and Opportunities.
    Fiaz S; Ahmad S; Noor MA; Wang X; Younas A; Riaz A; Riaz A; Ali F
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30791357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
    Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-based genome editing in wheat: a comprehensive review and future prospects.
    Kumar R; Kaur A; Pandey A; Mamrutha HM; Singh GP
    Mol Biol Rep; 2019 Jun; 46(3):3557-3569. PubMed ID: 30941642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update.
    Chaudhary M; Mukherjee TK; Singh R; Gupta M; Goyal S; Singhal P; Kumar R; Bhusal N; Sharma P
    Mol Biol Rep; 2022 Jul; 49(7):7101-7110. PubMed ID: 35568789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives.
    Ahmar S; Hensel G; Gruszka D
    Biotechnol Adv; 2023 Dec; 69():108248. PubMed ID: 37666372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cereal: a guide RNA design tool integrating regulome and genomic variation for wheat, maize and rice.
    He C; Liu H; Chen D; Xie WZ; Wang M; Li Y; Gong X; Yan W; Chen LL
    Plant Biotechnol J; 2021 Nov; 19(11):2141-2143. PubMed ID: 34310056
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.