These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 35099930)
61. Control of ZnO nanowires growth in flexible perovskite solar cells: A mini-review. Sekar K; Doineau R; Mayarambakam S; Schmaltz B; Poulin-Vittrant G Heliyon; 2024 Feb; 10(3):e24706. PubMed ID: 38322830 [TBL] [Abstract][Full Text] [Related]
62. ZnO nanowires hydrothermally grown on PET polymer substrates and their characteristics. Lee CY; Li SY; Lin P; Tseng TY J Nanosci Nanotechnol; 2005 Jul; 5(7):1088-94. PubMed ID: 16108432 [TBL] [Abstract][Full Text] [Related]
63. Study of defect density of copper vacancies in chalcogenide CuSbS Lal S; Rathore S; Patel K; Ray J; Sharma SS Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 39037627 [TBL] [Abstract][Full Text] [Related]
64. Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells. Chaturvedi N; Swami SK; Dutta V Nanoscale; 2014 Sep; 6(18):10772-8. PubMed ID: 25100621 [TBL] [Abstract][Full Text] [Related]
65. Hierarchically structured ZnO nanorods-nanosheets for improved quantum-dot-sensitized solar cells. Tian J; Uchaker E; Zhang Q; Cao G ACS Appl Mater Interfaces; 2014 Mar; 6(6):4466-72. PubMed ID: 24580891 [TBL] [Abstract][Full Text] [Related]
66. CdTe Nanocrystal Hetero-Junction Solar Cells with High Open Circuit Voltage Based on Sb-doped TiO₂ Electron Acceptor Materials. Li M; Liu X; Wen S; Liu S; Heng J; Qin D; Hou L; Wu H; Xu W; Huang W Nanomaterials (Basel); 2017 May; 7(5):. PubMed ID: 28467347 [TBL] [Abstract][Full Text] [Related]
67. Photoluminescence enhancement of ZnO nanowire arrays by atomic layer deposition of ZrO2 layers and thermal annealing. Zhang Y; Lu HL; Wang T; Ren QH; Chen HY; Zhang H; Ji XM; Liu WJ; Ding SJ; Zhang DW Phys Chem Chem Phys; 2016 Jun; 18(24):16377-85. PubMed ID: 27263423 [TBL] [Abstract][Full Text] [Related]
68. Enhancing electron collection efficiency and effective diffusion length in dye-sensitized solar cells. Wong DK; Ku CH; Chen YR; Chen GR; Wu JJ Chemphyschem; 2009 Oct; 10(15):2698-702. PubMed ID: 19777522 [TBL] [Abstract][Full Text] [Related]
69. Roles of interfacial modifiers in hybrid solar cells: inorganic/polymer bilayer vs inorganic/polymer:fullerene bulk heterojunction. Eom SH; Baek MJ; Park H; Yan L; Liu S; You W; Lee SH ACS Appl Mater Interfaces; 2014 Jan; 6(2):803-10. PubMed ID: 24351036 [TBL] [Abstract][Full Text] [Related]
70. Improved performance of nanowire-quantum-dot-polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials. Nadarajah A; Smith T; Könenkamp R Nanotechnology; 2012 Dec; 23(48):485403. PubMed ID: 23129022 [TBL] [Abstract][Full Text] [Related]
71. Structure and photovoltaic properties of ZnO nanowire for dye-sensitized solar cells. Kao MC; Chen HZ; Young SL; Lin CC; Kung CY Nanoscale Res Lett; 2012 May; 7(1):260. PubMed ID: 22607485 [TBL] [Abstract][Full Text] [Related]
72. Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy. Kuwabara T; Kawahara Y; Yamaguchi T; Takahashi K ACS Appl Mater Interfaces; 2009 Oct; 1(10):2107-10. PubMed ID: 20355841 [TBL] [Abstract][Full Text] [Related]
73. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT:PCBM/ZnO nanorod array hybrid solar cells. Wang TC; Su YH; Hung YK; Yeh CS; Huang LW; Gomulya W; Lai LH; Loi MA; Yang JS; Wu JJ Phys Chem Chem Phys; 2015 Aug; 17(30):19854-61. PubMed ID: 26159896 [TBL] [Abstract][Full Text] [Related]
74. Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications. Singh M; Rana TR; Kim S; Kim K; Yun JH; Kim J ACS Appl Mater Interfaces; 2016 May; 8(20):12764-71. PubMed ID: 27149372 [TBL] [Abstract][Full Text] [Related]
75. Solar cells based on block copolymer semiconductor nanowires: effects of nanowire aspect ratio. Ren G; Wu PT; Jenekhe SA ACS Nano; 2011 Jan; 5(1):376-84. PubMed ID: 21230007 [TBL] [Abstract][Full Text] [Related]
76. All-Inorganic CsPbI Liu C; Li W; Zhang C; Ma Y; Fan J; Mai Y J Am Chem Soc; 2018 Mar; 140(11):3825-3828. PubMed ID: 29517897 [TBL] [Abstract][Full Text] [Related]
77. Solution-processed zinc oxide/polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells. Chen HC; Lin SW; Jiang JM; Su YW; Wei KH ACS Appl Mater Interfaces; 2015 Mar; 7(11):6273-81. PubMed ID: 25697544 [TBL] [Abstract][Full Text] [Related]
78. Efficiency enhancement of perovskite solar cells by designing GeSe nanowires in the structure of the adsorbent layer. Aliyariyan M; Fathi D; Eskandari M; Tooghi A Nanotechnology; 2020 Nov; 31(46):465405. PubMed ID: 32721931 [TBL] [Abstract][Full Text] [Related]
79. Enhanced photoluminescence and field-emission behavior of vertically well aligned arrays of In-doped ZnO Nanowires. Ahmad M; Sun H; Zhu J ACS Appl Mater Interfaces; 2011 Apr; 3(4):1299-305. PubMed ID: 21410190 [TBL] [Abstract][Full Text] [Related]
80. Hierarchical metal/semiconductor nanostructure for efficient water splitting. Thiyagarajan P; Ahn HJ; Lee JS; Yoon JC; Jang JH Small; 2013 Jul; 9(13):2341-7. PubMed ID: 23292824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]