These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35100118)

  • 1. Improving Automatic Control of Upper-Limb Prosthesis Wrists Using Gaze-Centered Eye Tracking and Deep Learning.
    Karrenbach M; Boe D; Sie A; Bennett R; Rombokas E
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():340-349. PubMed ID: 35100118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible and static wrist units in upper limb prosthesis users: functionality scores, user satisfaction and compensatory movements.
    Deijs M; Bongers RM; Ringeling-van Leusen ND; van der Sluis CK
    J Neuroeng Rehabil; 2016 Mar; 13():26. PubMed ID: 26979272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A scoping review of eye tracking metrics used to assess visuomotor behaviours of upper limb prosthesis users.
    Cheng KY; Rehani M; Hebert JS
    J Neuroeng Rehabil; 2023 Apr; 20(1):49. PubMed ID: 37095489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. User surveys support designing a prosthetic wrist that incorporates the Dart Thrower's Motion.
    Davidson M; Bodine C; Weir RFF
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):312-315. PubMed ID: 29514521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wrist autonomy based on upper-limb synergy: a pilot study.
    Peng C; Yang D; Ge Z; Liu H
    Med Biol Eng Comput; 2023 May; 61(5):1149-1166. PubMed ID: 36689082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Physics-based Virtual Reality Environment to Quantify Functional Performance of Upper-limb Prostheses.
    Odette K; Fu Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3807-3810. PubMed ID: 31946703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Wrist Joint Angles from the Kinematics of the Arm: Application to the Control of Upper Limb Prostheses.
    Pérez-González A; Roda-Casanova V; Sabater-Gazulla J
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compliant Prosthetic Wrists Entail More Natural Use Than Stiff Wrists During Reaching, Not (Necessarily) During Manipulation.
    Kanitz G; Montagnani F; Controzzi M; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1407-1413. PubMed ID: 29985150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shoulder kinematics plus contextual target information enable control of multiple distal joints of a simulated prosthetic arm and hand.
    Mick S; Segas E; Dure L; Halgand C; Benois-Pineau J; Loeb GE; Cattaert D; de Rugy A
    J Neuroeng Rehabil; 2021 Jan; 18(1):3. PubMed ID: 33407618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of an Automatically Levelling Wrist Control System.
    Brenneis DJA; Dawson MR; Tanikawa H; Hebert JS; Carey JP; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():816-823. PubMed ID: 31374731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a modular and compliant wrist module for upper limb prosthetics.
    Demofonti A; Carpino G; Tagliamonte NL; Baldini G; Bramato L; Zollo L
    Anat Rec (Hoboken); 2023 Apr; 306(4):764-776. PubMed ID: 35362663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Compensatory Movement by Shoulder Joint Torque during Gain Adjustment of a Powered Prosthetic Wrist Joint.
    Kato A; Nagumo H; Tamon M; Fujie MG; Sugano S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1891-1894. PubMed ID: 30440766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Cable-actuated Prosthetic Emulator for Transradial Amputees.
    Poddar S; Cummiskey D; Kang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4529-4532. PubMed ID: 34892224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coactivation index of children with congenital upper limb reduction deficiencies before and after using a wrist-driven 3D printed partial hand prosthesis.
    Zuniga JM; Dimitrios K; Peck JL; Srivastava R; Pierce JE; Dudley DR; Salazar DA; Young KJ; Knarr BA
    J Neuroeng Rehabil; 2018 Jun; 15(1):48. PubMed ID: 29884185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trajectory Control-An Effective Strategy for Controlling Multi-DOF Upper Limb Prosthetic Devices.
    Gloumakov Y; Bimbo J; Dollar AM
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():420-430. PubMed ID: 35171774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task.
    Kaliki RR; Davoodi R; Loeb GE
    IEEE Trans Biomed Eng; 2013 Mar; 60(3):792-802. PubMed ID: 22287229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The DEKA Arm: its features, functionality, and evolution during the Veterans Affairs Study to optimize the DEKA Arm.
    Resnik L; Klinger SL; Etter K
    Prosthet Orthot Int; 2014 Dec; 38(6):492-504. PubMed ID: 24150930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting arm posture synergies in activities of daily living to control the wrist rotation in upper limb prostheses: A feasibility study.
    Montagnani F; Controzzi M; Cipriani C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2462-5. PubMed ID: 26736792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper limb activity in myoelectric prosthesis users is biased towards the intact limb and appears unrelated to goal-directed task performance.
    Chadwell A; Kenney L; Granat MH; Thies S; Head J; Galpin A; Baker R; Kulkarni J
    Sci Rep; 2018 Jul; 8(1):11084. PubMed ID: 30038402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies?
    Merad M; de Montalivet É; Touillet A; Martinet N; Roby-Brami A; Jarrassé N
    Front Neurorobot; 2018; 12():1. PubMed ID: 29456499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.