These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 35100255)
1. Meta-imputation of transcriptome from genotypes across multiple datasets by leveraging publicly available summary-level data. Liu AE; Kang HM PLoS Genet; 2022 Jan; 18(1):e1009571. PubMed ID: 35100255 [TBL] [Abstract][Full Text] [Related]
2. Tissue specific regulation of transcription in endometrium and association with disease. Mortlock S; Kendarsari RI; Fung JN; Gibson G; Yang F; Restuadi R; Girling JE; Holdsworth-Carson SJ; Teh WT; Lukowski SW; Healey M; Qi T; Rogers PAW; Yang J; McKinnon B; Montgomery GW Hum Reprod; 2020 Feb; 35(2):377-393. PubMed ID: 32103259 [TBL] [Abstract][Full Text] [Related]
3. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Guo S; Yang J Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563 [TBL] [Abstract][Full Text] [Related]
4. Statistical power of transcriptome-wide association studies. He R; Xue H; Pan W; Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062 [TBL] [Abstract][Full Text] [Related]
5. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies. Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007 [TBL] [Abstract][Full Text] [Related]
6. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331 [TBL] [Abstract][Full Text] [Related]
7. Building an optimal predictive model for imputing tissue-specific gene expression by combining genotype and whole-blood transcriptome data. Jung S; Lee CH; Sul JH; Han B HGG Adv; 2023 Oct; 4(4):100223. PubMed ID: 37576186 [TBL] [Abstract][Full Text] [Related]
8. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
9. Imputing Gene Expression in Uncollected Tissues Within and Beyond GTEx. Wang J; Gamazon ER; Pierce BL; Stranger BE; Im HK; Gibbons RD; Cox NJ; Nicolae DL; Chen LS Am J Hum Genet; 2016 Apr; 98(4):697-708. PubMed ID: 27040689 [TBL] [Abstract][Full Text] [Related]
10. TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits. Nagpal S; Meng X; Epstein MP; Tsoi LC; Patrick M; Gibson G; De Jager PL; Bennett DA; Wingo AP; Wingo TS; Yang J Am J Hum Genet; 2019 Aug; 105(2):258-266. PubMed ID: 31230719 [TBL] [Abstract][Full Text] [Related]
11. Subset-based method for cross-tissue transcriptome-wide association studies improves power and interpretability. Guo X; Chatterjee N; Dutta D HGG Adv; 2024 Apr; 5(2):100283. PubMed ID: 38491773 [TBL] [Abstract][Full Text] [Related]
12. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci. Ghaffar A; ; Nyholt DR Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199 [TBL] [Abstract][Full Text] [Related]
13. A robust two-sample transcriptome-wide Mendelian randomization method integrating GWAS with multi-tissue eQTL summary statistics. Gleason KJ; Yang F; Chen LS Genet Epidemiol; 2021 Jun; 45(4):353-371. PubMed ID: 33834509 [TBL] [Abstract][Full Text] [Related]
14. Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia. Head ST; Dezem F; Todor A; Yang J; Plummer J; Gayther S; Kar S; Schildkraut J; Epstein MP Am J Hum Genet; 2024 Jun; 111(6):1084-1099. PubMed ID: 38723630 [TBL] [Abstract][Full Text] [Related]
15. Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies. Shi X; Yang C; Liu J Methods Mol Biol; 2021; 2212():93-103. PubMed ID: 33733352 [TBL] [Abstract][Full Text] [Related]
16. A multi-tissue, splicing-based joint transcriptome-wide association study identifies susceptibility genes for breast cancer. Gao G; McClellan J; Barbeira AN; Fiorica PN; Li JL; Mu Z; Olopade OI; Huo D; Im HK Am J Hum Genet; 2024 Jun; 111(6):1100-1113. PubMed ID: 38733992 [TBL] [Abstract][Full Text] [Related]
17. TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8. Parrish RL; Gibson GC; Epstein MP; Yang J HGG Adv; 2022 Jan; 3(1):100068. PubMed ID: 35047855 [TBL] [Abstract][Full Text] [Related]
18. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies. Lin Z; Xue H; Malakhov MM; Knutson KA; Pan W Hum Mol Genet; 2022 Jul; 31(14):2462-2470. PubMed ID: 35043938 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome-Wide Association Supplements Genome-Wide Association in Kremling KAG; Diepenbrock CH; Gore MA; Buckler ES; Bandillo NB G3 (Bethesda); 2019 Sep; 9(9):3023-3033. PubMed ID: 31337639 [TBL] [Abstract][Full Text] [Related]
20. A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes. Gao G; Fiorica PN; McClellan J; Barbeira AN; Li JL; Olopade OI; Im HK; Huo D Am J Hum Genet; 2023 Jun; 110(6):950-962. PubMed ID: 37164006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]