These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35100418)

  • 1. AggMapNet: enhanced and explainable low-sample omics deep learning with feature-aggregated multi-channel networks.
    Shen WX; Liu Y; Chen Y; Zeng X; Tan Y; Jiang YY; Chen YZ
    Nucleic Acids Res; 2022 May; 50(8):e45. PubMed ID: 35100418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced metagenomic deep learning for disease prediction and consistent signature recognition by restructured microbiome 2D representations.
    Shen WX; Liang SR; Jiang YY; Chen YZ
    Patterns (N Y); 2023 Jan; 4(1):100658. PubMed ID: 36699735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omics integration method based on attention deep learning network for biomedical data classification.
    Gong P; Cheng L; Zhang Z; Meng A; Li E; Chen J; Zhang L
    Comput Methods Programs Biomed; 2023 Apr; 231():107377. PubMed ID: 36739624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification.
    Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H
    Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing Deep Learning for Omics in an Era of COVID-19.
    Jahanyar B; Tabatabaee H; Rowhanimanesh A
    OMICS; 2023 Apr; 27(4):141-152. PubMed ID: 37043378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning of 2D-Restructured gene expression representations for improved low-sample therapeutic response prediction.
    Cheng KP; Shen WX; Jiang YY; Chen Y; Chen YZ; Tan Y
    Comput Biol Med; 2023 Sep; 164():107245. PubMed ID: 37480677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data.
    Withnell E; Zhang X; Sun K; Guo Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34402865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning approach to predict inter-omics interactions in multi-layer networks.
    Borhani N; Ghaisari J; Abedi M; Kamali M; Gheisari Y
    BMC Bioinformatics; 2022 Jan; 23(1):53. PubMed ID: 35081903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopic deep learning with signal aggregated representations for enhanced cell phenotype and signature identification.
    Lu S; Huang Y; Shen WX; Cao YL; Cai M; Chen Y; Tan Y; Jiang YY; Chen YZ
    PNAS Nexus; 2024 Aug; 3(8):pgae268. PubMed ID: 39192845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning applications in single-cell genomics and transcriptomics data analysis.
    Erfanian N; Heydari AA; Feriz AM; IaƱez P; Derakhshani A; Ghasemigol M; Farahpour M; Razavi SM; Nasseri S; Safarpour H; Sahebkar A
    Biomed Pharmacother; 2023 Sep; 165():115077. PubMed ID: 37393865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model.
    Zhong Y; Peng Y; Lin Y; Chen D; Zhang H; Zheng W; Chen Y; Wu C
    BMC Med Inform Decis Mak; 2023 May; 23(1):82. PubMed ID: 37147619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OmiEmbed: A Unified Multi-Task Deep Learning Framework for Multi-Omics Data.
    Zhang X; Xing Y; Sun K; Guo Y
    Cancers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised classification of multi-omics data during cardiac remodeling using deep learning.
    Chung NC; Mirza B; Choi H; Wang J; Wang D; Ping P; Wang W
    Methods; 2019 Aug; 166():66-73. PubMed ID: 30853547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning to analyse omic-data for COVID-19 diagnosis and prognosis.
    Liu X; Hasan MR; Ahmed KA; Hossain MZ
    BMC Bioinformatics; 2023 Jan; 24(1):7. PubMed ID: 36609221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization.
    Papadimitroulas P; Brocki L; Christopher Chung N; Marchadour W; Vermet F; Gaubert L; Eleftheriadis V; Plachouris D; Visvikis D; Kagadis GC; Hatt M
    Phys Med; 2021 Mar; 83():108-121. PubMed ID: 33765601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages.
    Nie D; Lu J; Zhang H; Adeli E; Wang J; Yu Z; Liu L; Wang Q; Wu J; Shen D
    Sci Rep; 2019 Jan; 9(1):1103. PubMed ID: 30705340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational frameworks integrating deep learning and statistical models in mining multimodal omics data.
    Lac L; Leung CK; Hu P
    J Biomed Inform; 2024 Apr; 152():104629. PubMed ID: 38552994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JDSNMF: Joint Deep Semi-Non-Negative Matrix Factorization for Learning Integrative Representation of Molecular Signals in Alzheimer's Disease.
    Moon S; Lee H
    J Pers Med; 2021 Jul; 11(8):. PubMed ID: 34442330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A benchmark study of deep learning-based multi-omics data fusion methods for cancer.
    Leng D; Zheng L; Wen Y; Zhang Y; Wu L; Wang J; Wang M; Zhang Z; He S; Bo X
    Genome Biol; 2022 Aug; 23(1):171. PubMed ID: 35945544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data.
    Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.