These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35100503)

  • 1. All-Atom Nonadiabatic Dynamics Simulation of Hybrid Graphene Nanoribbons Based on Wannier Analysis and Machine Learning.
    Wang Z; Dong J; Qiu J; Wang L
    ACS Appl Mater Interfaces; 2022 Jan; ():. PubMed ID: 35100503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A first-principles divide-and-conquer approach for electronic structure of large systems and its application to graphene nanoribbons.
    Yao YX; Wang CZ; Zhang GP; Ji M; Ho KM
    J Phys Condens Matter; 2009 Jun; 21(23):235501. PubMed ID: 21825587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of
    Davoudiniya M; Yang B; Sanyal B
    Phys Chem Chem Phys; 2024 Jan; 26(3):1936-1949. PubMed ID: 38116600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inclusion of Machine Learning Kernel Ridge Regression Potential Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics Simulation.
    Hu D; Xie Y; Li X; Li L; Lan Z
    J Phys Chem Lett; 2018 Jun; 9(11):2725-2732. PubMed ID: 29732893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons.
    Zhou G; Cen C; Wang S; Deng M; Prezhdo OV
    J Phys Chem Lett; 2019 Nov; 10(22):7179-7187. PubMed ID: 31644293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks.
    Wang B; Chu W; Tkatchenko A; Prezhdo OV
    J Phys Chem Lett; 2021 Jul; 12(26):6070-6077. PubMed ID: 34170705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge transport mechanism in networks of armchair graphene nanoribbons.
    Richter N; Chen Z; Tries A; Prechtl T; Narita A; Müllen K; Asadi K; Bonn M; Kläui M
    Sci Rep; 2020 Feb; 10(1):1988. PubMed ID: 32029795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Inverse Fast Fourier Transform.
    Wang B; Chu W; Prezhdo OV
    J Phys Chem Lett; 2022 Jan; 13(1):331-338. PubMed ID: 34978830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonadiabatic dynamics: The SHARC approach.
    Mai S; Marquetand P; González L
    Wiley Interdiscip Rev Comput Mol Sci; 2018; 8(6):e1370. PubMed ID: 30450129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based
    Ko HY; Jia J; Santra B; Wu X; Car R; DiStasio RA
    J Chem Theory Comput; 2020 Jun; 16(6):3757-3785. PubMed ID: 32045232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximally localized Wannier functions in LaMnO3 within PBE + U, hybrid functionals and partially self-consistent GW: an efficient route to construct ab initio tight-binding parameters for eg perovskites.
    Franchini C; Kováčik R; Marsman M; Murthy SS; He J; Ederer C; Kresse G
    J Phys Condens Matter; 2012 Jun; 24(23):235602. PubMed ID: 22581069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breaking the size limitation of nonadiabatic molecular dynamics in condensed matter systems with local descriptor machine learning.
    Liu D; Wang B; Wu Y; Vasenko AS; Prezhdo OV
    Proc Natl Acad Sci U S A; 2024 Sep; 121(36):e2403497121. PubMed ID: 39213179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized Ab Initio Nonadiabatic Dynamics Simulation Methods from Molecular to Extended Systems.
    Xie BB; Jia PK; Wang KX; Chen WK; Liu XY; Cui G
    J Phys Chem A; 2022 Mar; 126(11):1789-1804. PubMed ID: 35266391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations.
    Shimojo F; Hattori S; Kalia RK; Kunaseth M; Mou W; Nakano A; Nomura K; Ohmura S; Rajak P; Shimamura K; Vashishta P
    J Chem Phys; 2014 May; 140(18):18A529. PubMed ID: 24832337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-Learned Kohn-Sham Hamiltonian Mapping for Nonadiabatic Molecular Dynamics.
    Shakiba M; Akimov AV
    J Chem Theory Comput; 2024 Apr; 20(8):2992-3007. PubMed ID: 38581699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triggering One-Dimensional Phase Transition with Defects at the Graphene Zigzag Edge.
    Deng Q; Zhao J
    Nano Lett; 2016 Feb; 16(2):1244-9. PubMed ID: 26783941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-Diabatic Scheme for Nonadiabatic On-the-Fly Simulations.
    Zhou W; Mandal A; Huo P
    J Phys Chem Lett; 2019 Nov; 10(22):7062-7070. PubMed ID: 31665889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.