BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35101217)

  • 1. Modeling of selenocysteine-derived reactive intermediates utilizing a nano-sized molecular cavity as a protective cradle.
    Masuda R; Goto K
    Methods Enzymol; 2022; 662():331-361. PubMed ID: 35101217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of the Formation of a Selenocysteine Selenenic Acid through Hydrolysis of a Selenocysteine Selenenyl Iodide Utilizing a Protective Molecular Cradle.
    Goto K; Kimura R; Masuda R; Karasaki T; Sase S
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Catalytic Cycle of Glutathione Peroxidase by Nuclear Magnetic Resonance Spectroscopic Analysis of Selenocysteine Selenenic Acids.
    Masuda R; Kimura R; Karasaki T; Sase S; Goto K
    J Am Chem Soc; 2021 May; 143(17):6345-6350. PubMed ID: 33887135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Electrophilic Intermediates in the Bypass Mechanism of Glutathione Peroxidase: Synthesis, Reactivity, and Structures of Selenocysteine-Derived Cyclic Selenenyl Amides.
    Masuda R; Karasaki T; Sase S; Kuwano S; Goto K
    Chemistry; 2023 Dec; 29(71):e202302615. PubMed ID: 37738074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione peroxidase's reaction intermediate selenenic acid is stabilized by the protein microenvironment.
    Li F; Liu J; Rozovsky S
    Free Radic Biol Med; 2014 Nov; 76():127-35. PubMed ID: 25124921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants.
    Bhabak KP; Mugesh G
    Acc Chem Res; 2010 Nov; 43(11):1408-19. PubMed ID: 20690615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenocysteine oxidation in glutathione peroxidase catalysis: an MS-supported quantum mechanics study.
    Orian L; Mauri P; Roveri A; Toppo S; Benazzi L; Bosello-Travain V; De Palma A; Maiorino M; Miotto G; Zaccarin M; Polimeno A; Flohé L; Ursini F
    Free Radic Biol Med; 2015 Oct; 87():1-14. PubMed ID: 26163004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Selenoprotein
    Masuda R; Kuwano S; Goto K
    J Am Chem Soc; 2023 Jul; 145(26):14184-14189. PubMed ID: 37267591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid.
    Sase S; Kakimoto R; Kimura R; Goto K
    Molecules; 2015 Dec; 20(12):21415-20. PubMed ID: 26633336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatility of selenium catalysis in PHGPx unraveled by LC/ESI-MS/MS.
    Mauri P; Benazzi L; Flohé L; Maiorino M; Pietta PG; Pilawa S; Roveri A; Ursini F
    Biol Chem; 2003 Apr; 384(4):575-88. PubMed ID: 12751787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of selenium-containing glutathione transferase zeta1-1 with high GPX activity prepared in eukaryotic cells.
    Yin L; Song J; Board PG; Yu Y; Han X; Wei J
    J Mol Recognit; 2013 Jan; 26(1):38-45. PubMed ID: 23280616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction.
    Borchert A; Kalms J; Roth SR; Rademacher M; Schmidt A; Holzhutter HG; Kuhn H; Scheerer P
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Sep; 1863(9):1095-1107. PubMed ID: 29883798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol cofactors for selenoenzymes and their synthetic mimics.
    Sarma BK; Mugesh G
    Org Biomol Chem; 2008 Mar; 6(6):965-74. PubMed ID: 18327317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered selenium-containing glutaredoxin displays strong glutathione peroxidase activity rivaling natural enzyme.
    Ge Y; Qi Z; Wang Y; Liu X; Li J; Xu J; Liu J; Shen J
    Int J Biochem Cell Biol; 2009 Apr; 41(4):900-6. PubMed ID: 18805505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic studies on selenoenzymes: modeling the role of proximal histidines in thioredoxin reductases.
    Sarma BK; Mugesh G
    Inorg Chem; 2006 Jul; 45(14):5307-14. PubMed ID: 16813393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry and Chemical Biology of Selenenyl Sulfides and Thioseleninic Acids.
    Hamsath A; Xian M
    Antioxid Redox Signal; 2020 Dec; 33(16):1143-1157. PubMed ID: 32151152
    [No Abstract]   [Full Text] [Related]  

  • 17. Amide-based glutathione peroxidase mimics: effect of secondary and tertiary amide substituents on antioxidant activity.
    Bhabak KP; Mugesh G
    Chem Asian J; 2009 Jun; 4(6):974-983. PubMed ID: 19378298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of alpha-methyl selenocysteine as a tool for the study of selenoproteins.
    Ste Marie EJ; Hondal RJ
    Methods Enzymol; 2022; 662():297-329. PubMed ID: 35101216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenocysteine in thiol/disulfide-like exchange reactions.
    Hondal RJ; Marino SM; Gladyshev VN
    Antioxid Redox Signal; 2013 May; 18(13):1675-89. PubMed ID: 23121622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving GPX activity of selenium-containing human single-chain Fv antibody by site-directed mutation based on the structural analysis.
    Xu J; Song J; Yan F; Chu H; Luo J; Zhao Y; Cheng X; Luo G; Zheng Q; Wei J
    J Mol Recognit; 2009; 22(4):293-300. PubMed ID: 19277948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.