BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35101217)

  • 21. The oxidation of selenocysteine is involved in the inactivation of glutathione peroxidase by nitric oxide donor.
    Asahi M; Fujii J; Takao T; Kuzuya T; Hori M; Shimonishi Y; Taniguchi N
    J Biol Chem; 1997 Aug; 272(31):19152-7. PubMed ID: 9235904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of alpha-methyl selenocysteine and its utilization as a glutathione peroxidase mimic.
    Wehrle RJ; Ste Marie EJ; Hondal RJ; Masterson DS
    J Pept Sci; 2019 Jun; 25(6):e3173. PubMed ID: 31074180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The first direct oxidative conversion of a selenol to a stable selenenic acid: experimental demonstration of three processes included in the catalytic cycle of glutathione peroxidase.
    Goto K; Nagahama M; Mizushima T; Shimada K; Kawashima T; Okazaki R
    Org Lett; 2001 Nov; 3(22):3569-72. PubMed ID: 11678710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the Chalcogen (S, Se, Te) in the Oxidation Mechanism of the Glutathione Peroxidase Active Site.
    Bortoli M; Torsello M; Bickelhaupt FM; Orian L
    Chemphyschem; 2017 Nov; 18(21):2990-2998. PubMed ID: 28837255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards more efficient glutathione peroxidase mimics: substrate recognition and catalytic group assembly.
    Luo GM; Ren XJ; Liu JQ; Mu Y; Shen JC
    Curr Med Chem; 2003 Jul; 10(13):1151-83. PubMed ID: 12678808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antioxidant activity of the anti-inflammatory compound ebselen: a reversible cyclization pathway via selenenic and seleninic acid intermediates.
    Sarma BK; Mugesh G
    Chemistry; 2008; 14(34):10603-14. PubMed ID: 18932179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of dehydroalanine as a building block for the synthesis of selenocysteine-containing peptides.
    Reddy KM; Mugesh G
    RSC Adv; 2018 Dec; 9(1):34-43. PubMed ID: 35521604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selenocysteine versus cysteine reactivity: a theoretical study of their oxidation by hydrogen peroxide.
    Cardey B; Enescu M
    J Phys Chem A; 2007 Feb; 111(4):673-8. PubMed ID: 17249758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of selenocysteine-containing glutathione S-transferase in eukaryote.
    Liu H; Yin L; Board PG; Han X; Fan Z; Fang J; Lu Z; Zhang Y; Wei J
    Protein Expr Purif; 2012 Jul; 84(1):59-63. PubMed ID: 22561244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of selenium from selenoproteins: conversion of selenocysteine to dehydroalanine in vitro.
    Ma S; Caprioli RM; Hill KE; Burk RF
    J Am Soc Mass Spectrom; 2003 Jun; 14(6):593-600. PubMed ID: 12781460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of a highly stable artificial glutathione peroxidase on a protein nanoring.
    Miao L; Zhang X; Si C; Gao Y; Zhao L; Hou C; Shoseyov O; Luo Q; Liu J
    Org Biomol Chem; 2014 Jan; 12(2):362-9. PubMed ID: 24264596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple and efficient strategy to enhance the antioxidant activities of amino-substituted glutathione peroxidase mimics.
    Bhabak KP; Mugesh G
    Chemistry; 2008; 14(28):8640-51. PubMed ID: 18668498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can dimedone be used to study selenoproteins? An investigation into the reactivity of dimedone toward oxidized forms of selenocysteine.
    Payne NC; Barber DR; Ruggles EL; Hondal RJ
    Protein Sci; 2019 Jan; 28(1):41-55. PubMed ID: 29451338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selenocysteine in proteins-properties and biotechnological use.
    Johansson L; Gafvelin G; Arnér ES
    Biochim Biophys Acta; 2005 Oct; 1726(1):1-13. PubMed ID: 15967579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical and thermodynamic comparison of the selenocysteine containing and non-containing thioredoxin glutathione reductase of Fasciola gigantica.
    Kalita P; Shukla H; Shukla R; Tripathi T
    Biochim Biophys Acta Gen Subj; 2018 Jun; 1862(6):1306-1316. PubMed ID: 29526505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox active motifs in selenoproteins.
    Li F; Lutz PB; Pepelyayeva Y; Arnér ES; Bayse CA; Rozovsky S
    Proc Natl Acad Sci U S A; 2014 May; 111(19):6976-81. PubMed ID: 24769567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering glutathione transferase to a novel glutathione peroxidase mimic with high catalytic efficiency. Incorporation of selenocysteine into a glutathione-binding scaffold using an auxotrophic expression system.
    Yu HJ; Liu JQ; Bock A; Li J; Luo GM; Shen JC
    J Biol Chem; 2005 Mar; 280(12):11930-5. PubMed ID: 15649895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Common modifications of selenocysteine in selenoproteins.
    Arnér ESJ
    Essays Biochem; 2020 Feb; 64(1):45-53. PubMed ID: 31867620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unglycosylated recombinant human glutathione peroxidase 3 mutant from Escherichia coli is active as a monomer.
    Song J; Yu Y; Xing R; Guo X; Liu D; Wei J; Song H
    Sci Rep; 2014 Oct; 4():6698. PubMed ID: 25331785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of catalytic activity and structure of selenocysteine-containing hGSTZ1c-1c based on site-directed mutagenesis and computational analysis.
    Yu Y; Song J; Song Y; Guo X; Han Y; Wei J
    IUBMB Life; 2013 Feb; 65(2):163-70. PubMed ID: 23299908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.