These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. How to Build a Metalloenzyme: Lessons from a Protein-Based Model of Acetyl Coenzyme A Synthase. Shafaat HS; Manesis AC; Yerbulekova A Acc Chem Res; 2023 May; 56(9):984-993. PubMed ID: 37042748 [TBL] [Abstract][Full Text] [Related]
4. Structure, function, and biosynthesis of nickel-dependent enzymes. Alfano M; Cavazza C Protein Sci; 2020 May; 29(5):1071-1089. PubMed ID: 32022353 [TBL] [Abstract][Full Text] [Related]
5. Hydrogenases. Sickerman NS; Hu Y Methods Mol Biol; 2019; 1876():65-88. PubMed ID: 30317475 [TBL] [Abstract][Full Text] [Related]
6. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation. DiPrimio DJ; Holland PL J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051 [TBL] [Abstract][Full Text] [Related]
8. Modeling the active sites in metalloenzymes 5. The heterolytic bond cleavage of H(2) in the [NiFe] hydrogenase of desulfovibrio gigas by a nucleophilic addition mechanism. Niu S; Hall MB Inorg Chem; 2001 Nov; 40(24):6201-3. PubMed ID: 11703120 [TBL] [Abstract][Full Text] [Related]
9. Nickel uptake and utilization by microorganisms. Mulrooney SB; Hausinger RP FEMS Microbiol Rev; 2003 Jun; 27(2-3):239-61. PubMed ID: 12829270 [TBL] [Abstract][Full Text] [Related]
10. Proton Transfer Mechanisms in Bimetallic Hydrogenases. Tai H; Hirota S; Stripp ST Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230 [TBL] [Abstract][Full Text] [Related]
11. Catalytic Metallopolymers from [2Fe-2S] Clusters: Artificial Metalloenzymes for Hydrogen Production. Karayilan M; Brezinski WP; Clary KE; Lichtenberger DL; Glass RS; Pyun J Angew Chem Int Ed Engl; 2019 Jun; 58(23):7537-7550. PubMed ID: 30628136 [TBL] [Abstract][Full Text] [Related]
14. Dithiolato-bridged nickel-iron complexes as models for the active site of [NiFe]-hydrogenases. Song LC; Yang XY; Cao M; Gao XY; Liu BB; Zhu L; Jiang F Chem Commun (Camb); 2017 Mar; 53(27):3818-3821. PubMed ID: 28287233 [TBL] [Abstract][Full Text] [Related]
15. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Brazzolotto D; Gennari M; Queyriaux N; Simmons TR; Pécaut J; Demeshko S; Meyer F; Orio M; Artero V; Duboc C Nat Chem; 2016 Nov; 8(11):1054-1060. PubMed ID: 27768098 [TBL] [Abstract][Full Text] [Related]
16. Multielectron Chemistry within a Model Nickel Metalloprotein: Mechanistic Implications for Acetyl-CoA Synthase. Manesis AC; O'Connor MJ; Schneider CR; Shafaat HS J Am Chem Soc; 2017 Aug; 139(30):10328-10338. PubMed ID: 28675928 [TBL] [Abstract][Full Text] [Related]
17. Nickel-Substituted Rubredoxin as a Minimal Enzyme Model for Hydrogenase. Slater JW; Shafaat HS J Phys Chem Lett; 2015 Sep; 6(18):3731-6. PubMed ID: 26722748 [TBL] [Abstract][Full Text] [Related]
18. A whole-cell, high-throughput hydrogenase assay to identify factors that modulate [NiFe]-hydrogenase activity. Lacasse MJ; Sebastiampillai S; Côté JP; Hodkinson N; Brown ED; Zamble DB J Biol Chem; 2019 Oct; 294(42):15373-15385. PubMed ID: 31455635 [TBL] [Abstract][Full Text] [Related]
19. A Biochemical Nickel(I) State Supports Nucleophilic Alkyl Addition: A Roadmap for Methyl Reactivity in Acetyl Coenzyme A Synthase. Manesis AC; Musselman BW; Keegan BC; Shearer J; Lehnert N; Shafaat HS Inorg Chem; 2019 Jul; 58(14):8969-8982. PubMed ID: 30788970 [TBL] [Abstract][Full Text] [Related]
20. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry. Armstrong FA; Evans RM; Hexter SV; Murphy BJ; Roessler MM; Wulff P Acc Chem Res; 2016 May; 49(5):884-92. PubMed ID: 27104487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]