These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 3510183)
1. GAL3 gene product is required for maintenance of the induced state of the GAL cluster genes in Saccharomyces cerevisiae. Nogi Y J Bacteriol; 1986 Jan; 165(1):101-6. PubMed ID: 3510183 [TBL] [Abstract][Full Text] [Related]
2. Genetic and molecular analysis of the GAL3 gene in the expression of the galactose/melibiose regulon of Saccharomyces cerevisiae. Torchia TE; Hopper JE Genetics; 1986 Jun; 113(2):229-46. PubMed ID: 3013721 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the GAL3 signal transduction pathway activating GAL4 protein-dependent transcription in Saccharomyces cerevisiae. Bhat PJ; Oh D; Hopper JE Genetics; 1990 Jun; 125(2):281-91. PubMed ID: 2199310 [TBL] [Abstract][Full Text] [Related]
4. The mechanism of inducer formation in gal3 mutants of the yeast galactose system is independent of normal galactose metabolism and mitochondrial respiratory function. Bhat PJ; Hopper JE Genetics; 1991 Jun; 128(2):233-9. PubMed ID: 2071013 [TBL] [Abstract][Full Text] [Related]
5. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae. Kar RK; Qureshi MT; DasAdhikari AK; Zahir T; Venkatesh KV; Bhat PJ FEBS J; 2014 Apr; 281(7):1798-817. PubMed ID: 24785355 [TBL] [Abstract][Full Text] [Related]
6. Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Bajwa W; Torchia TE; Hopper JE Mol Cell Biol; 1988 Aug; 8(8):3439-47. PubMed ID: 3062381 [TBL] [Abstract][Full Text] [Related]
7. Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae. II. The isolation and dosage effect of the regulatory gene GAL80. Nogi Y; Shimada H; Matsuzaki Y; Hashimoto H; Fukasawa T Mol Gen Genet; 1984; 195(1-2):29-34. PubMed ID: 6092855 [TBL] [Abstract][Full Text] [Related]
8. Positive Feedback Genetic Circuit Incorporating a Constitutively Active Mutant Gal3 into Yeast GAL Induction System. Ryo S; Ishii J; Matsuno T; Nakamura Y; Matsubara D; Tominaga M; Kondo A ACS Synth Biol; 2017 Jun; 6(6):928-935. PubMed ID: 28324652 [TBL] [Abstract][Full Text] [Related]
9. Regulation of the galactose pathway in Saccharomyces cerevisiae: induction of uridyl transferase mRNA and dependency on GAL4 gene function. Hopper JE; Broach JR; Rowe LB Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2878-82. PubMed ID: 351620 [TBL] [Abstract][Full Text] [Related]
10. Divergence of alternative sugar preferences through modulation of the expression and activity of the Gal3 sensor in yeast. Fita-Torró J; Swamy KBS; Pascual-Ahuir A; Proft M Mol Ecol; 2023 Jul; 32(13):3557-3574. PubMed ID: 37052375 [TBL] [Abstract][Full Text] [Related]
11. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Bhat PJ; Hopper JE Mol Cell Biol; 1992 Jun; 12(6):2701-7. PubMed ID: 1317007 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence based assay of GAL system in yeast Saccharomyces cerevisiae. Stagoj MN; Comino A; Komel R FEMS Microbiol Lett; 2005 Mar; 244(1):105-10. PubMed ID: 15727828 [TBL] [Abstract][Full Text] [Related]
13. Stochastic variation in the concentration of a repressor activates GAL genetic switch: implications in evolution of regulatory network. Bhat PJ; Venkatesh KV FEBS Lett; 2005 Jan; 579(3):597-603. PubMed ID: 15670814 [TBL] [Abstract][Full Text] [Related]
14. Replacement of a conserved tyrosine by tryptophan in Gal3p of Saccharomyces cerevisiae reduces constitutive activity: implications for signal transduction in the GAL regulon. Lakshminarasimhan A; Bhat PJ Mol Genet Genomics; 2005 Nov; 274(4):384-93. PubMed ID: 16160853 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Suzuki-Fujimoto T; Fukuma M; Yano KI; Sakurai H; Vonika A; Johnston SA; Fukasawa T Mol Cell Biol; 1996 May; 16(5):2504-8. PubMed ID: 8628318 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of Saccharomyces cerevisiae gal1 Delta and gal1 Delta hxk2 Delta mutants expressing recombinant proteins from the GAL promoter. Kang HA; Kang WK; Go SM; Rezaee A; Krishna SH; Rhee SK; Kim JY Biotechnol Bioeng; 2005 Mar; 89(6):619-29. PubMed ID: 15696522 [TBL] [Abstract][Full Text] [Related]
17. IMP1/imp1: a gene involved in the nucleo-mitochondrial control of galactose fermentation in Saccharomyces cerevisiae. Algeri AA; Bianchi L; Viola AM; Puglisi PP; Marmiroli N Genetics; 1981 Jan; 97(1):27-44. PubMed ID: 7021320 [TBL] [Abstract][Full Text] [Related]
18. Genetic co-regulation of galactose and melibiose utilization in Saccharomyces. Kew OM; Douglas HC J Bacteriol; 1976 Jan; 125(1):33-41. PubMed ID: 1245460 [TBL] [Abstract][Full Text] [Related]
19. Perturbation of the interaction between Gal4p and Gal80p of the Saccharomyces cerevisiae GAL switch results in altered responses to galactose and glucose. Das Adhikari AK; Qureshi MT; Kar RK; Bhat PJ Mol Microbiol; 2014 Oct; 94(1):202-17. PubMed ID: 25135592 [TBL] [Abstract][Full Text] [Related]
20. Sequence of the Saccharomyces GAL region and its transcription in vivo. Citron BA; Donelson JE J Bacteriol; 1984 Apr; 158(1):269-78. PubMed ID: 6715281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]