These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35101985)

  • 1. A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries.
    Chen Z; Su H; Sun P; Bai P; Yang J; Li M; Deng Y; Liu Y; Geng Y; Xu Y
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35101985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Cathode with Dual-Type Multielectron Reaction Centers for High-Energy-Density Lithium Primary Batteries.
    Xun H; Chen Z; Liu Y; Su H; Yang J; Liu Y; Xu Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29064-29071. PubMed ID: 37293868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perovskite Cathodes for Aqueous and Organic Iodine Batteries Operating Under One and Two Electrons Redox Modes.
    Li X; Wang S; Zhang D; Li P; Chen Z; Chen A; Huang Z; Liang G; Rogach AL; Zhi C
    Adv Mater; 2024 Jan; 36(4):e2304557. PubMed ID: 37587645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
    Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW
    Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surpassing the Redox Potential Limit of Organic Cathode Materials via Extended p-π Conjugation of Dioxin.
    Zheng Y; Ji H; Liu J; Wang Z; Zhou J; Qian T; Yan C
    Nano Lett; 2022 Apr; 22(8):3473-3479. PubMed ID: 35426684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O
    Xu J; Ma J; Fan Q; Guo S; Dou S
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28488763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li-Ion Batteries.
    Luo C; Ji X; Hou S; Eidson N; Fan X; Liang Y; Deng T; Jiang J; Wang C
    Adv Mater; 2018 Jun; 30(23):e1706498. PubMed ID: 29687487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives.
    Cui J; Guo Z; Yi J; Liu X; Wu K; Liang P; Li Q; Liu Y; Wang Y; Xia Y; Zhang J
    ChemSusChem; 2020 May; 13(9):2160-2185. PubMed ID: 32043825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Class of Organopolysulfides As Liquid Cathode Materials for High-Energy-Density Lithium Batteries.
    Bhargav A; Bell ME; Karty J; Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21084-21090. PubMed ID: 29883083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Conductive Inorganic Cathodes Promising High-Energy Organic Batteries.
    Mao M; Wang S; Lin Z; Liu T; Hu YS; Li H; Huang X; Chen L; Suo L
    Adv Mater; 2021 Feb; 33(8):e2005781. PubMed ID: 33470470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving interfacial stability of ultrahigh-voltage lithium metal batteries with single-crystal Ni-rich cathode via a multifunctional additive strategy.
    Zhang Z; Liu F; Huang Z; Yi M; Fan X; Bai M; Hong B; Zhang Z; Li J; Lai Y
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1471-1480. PubMed ID: 34742066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite.
    Yang C; Chen J; Ji X; Pollard TP; Lü X; Sun CJ; Hou S; Liu Q; Liu C; Qing T; Wang Y; Borodin O; Ren Y; Xu K; Wang C
    Nature; 2019 May; 569(7755):245-250. PubMed ID: 31068723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.