These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35101987)

  • 1. Trends in surface equivalent potential temperature: A more comprehensive metric for global warming and weather extremes.
    Song F; Zhang GJ; Ramanathan V; Leung LR
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35101987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of extreme precipitation to uniform surface warming in quasi-global aquaplanet simulations at high resolution.
    O'Gorman PA; Li Z; Boos WR; Yuval J
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2195):20190543. PubMed ID: 33641467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic amplification of extreme precipitation sensitivity.
    Nie J; Sobel AH; Shaevitz DA; Wang S
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9467-9472. PubMed ID: 30181273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exponential increases in high-temperature extremes in North America.
    Davariashtiyani A; Taherkhani M; Fattahpour S; Vitousek S
    Sci Rep; 2023 Nov; 13(1):19177. PubMed ID: 37932278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthropogenically-driven increases in the risks of summertime compound hot extremes.
    Wang J; Chen Y; Tett SFB; Yan Z; Zhai P; Feng J; Xia J
    Nat Commun; 2020 Feb; 11(1):528. PubMed ID: 32047147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence linking rapid Arctic warming to mid-latitude weather patterns.
    Francis J; Skific N
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2045):. PubMed ID: 26032322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global reconstruction reduces the uncertainty of oceanic nitrous oxide emissions and reveals a vigorous seasonal cycle.
    Yang S; Chang BX; Warner MJ; Weber TS; Bourbonnais AM; Santoro AE; Kock A; Sonnerup RE; Bullister JL; Wilson ST; Bianchi D
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11954-11960. PubMed ID: 32424089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in precipitation extremes in the Yangtze River Basin during 1960-2019 and the association with global warming, ENSO, and local effects.
    Li X; Zhang K; Gu P; Feng H; Yin Y; Chen W; Cheng B
    Sci Total Environ; 2021 Mar; 760():144244. PubMed ID: 33348157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer.
    Sun X; Ding Q; Wang SS; Topál D; Li Q; Castro C; Teng H; Luo R; Ding Y
    Nat Commun; 2022 Mar; 13(1):1288. PubMed ID: 35277484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tropical surface urban heat islands in east Africa.
    Garuma GF
    Sci Rep; 2023 Mar; 13(1):4509. PubMed ID: 36934169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Future precipitation increase constrained by climatological pattern of cloud effect.
    Zhou W; Leung LR; Siler N; Lu J
    Nat Commun; 2023 Oct; 14(1):6363. PubMed ID: 37821452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human contribution to more-intense precipitation extremes.
    Min SK; Zhang X; Zwiers FW; Hegerl GC
    Nature; 2011 Feb; 470(7334):378-81. PubMed ID: 21331039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of spatially varying wetland source signatures on the atmospheric variability of
    Stell AC; Douglas PMJ; Rigby M; Ganesan AL
    Philos Trans A Math Phys Eng Sci; 2021 Nov; 379(2210):20200442. PubMed ID: 34565222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric warming and the amplification of precipitation extremes.
    Allan RP; Soden BJ
    Science; 2008 Sep; 321(5895):1481-4. PubMed ID: 18687921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trends in the consecutive days of temperature and precipitation extremes in China during 1961-2015.
    Shi J; Cui L; Wen K; Tian Z; Wei P; Zhang B
    Environ Res; 2018 Feb; 161():381-391. PubMed ID: 29197279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial variations in the warming trend and the transition to more severe weather in midlatitudes.
    Estrada F; Kim D; Perron P
    Sci Rep; 2021 Jan; 11(1):145. PubMed ID: 33420406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of changes in atmospheric circulation patterns to extreme temperature trends.
    Horton DE; Johnson NC; Singh D; Swain DL; Rajaratnam B; Diffenbaugh NS
    Nature; 2015 Jun; 522(7557):465-9. PubMed ID: 26108856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Verification of abrupt and gradual shifts in Iranian precipitation and temperature data with statistical methods and stations metadata.
    Bazrafshan J; Cheraghalizadeh M
    Environ Monit Assess; 2021 Feb; 193(3):139. PubMed ID: 33620592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regionally high risk increase for precipitation extreme events under global warming.
    Martinez-Villalobos C; Neelin JD
    Sci Rep; 2023 Apr; 13(1):5579. PubMed ID: 37019944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensification of daily tropical precipitation extremes from more organized convection.
    Bao J; Stevens B; Kluft L; Muller C
    Sci Adv; 2024 Feb; 10(8):eadj6801. PubMed ID: 38394192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.