BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35102122)

  • 1. Pedicle Subtraction Osteotomy Construct Optimization: A Cadaveric Study of Various Multirod and Interbody Configurations.
    Pereira BA; Godzik J; Lehrman JN; Sawa AGU; Hlubek RJ; Uribe JS; Kelly BP; Turner JD
    Spine (Phila Pa 1976); 2022 Apr; 47(8):640-647. PubMed ID: 35102122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supplemental rods are needed to maximally reduce rod strain across the lumbosacral junction with TLIF but not ALIF in long constructs.
    Godzik J; Hlubek RJ; Newcomb AGUS; Lehrman JN; de Andrada Pereira B; Farber SH; Lenke LG; Kelly BP; Turner JD
    Spine J; 2019 Jun; 19(6):1121-1131. PubMed ID: 30684758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation.
    Reis MT; Reyes PM; Bse ; Altun I; Newcomb AG; Singh V; Chang SW; Kelly BP; Crawford NR
    J Neurosurg Spine; 2016 Dec; 25(6):720-726. PubMed ID: 27391398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Supplemental Short Pre-Contoured Accessory Rods and Cobalt Chrome Alloy Posterior Rods Reduces Primary Rod Strain and Range of Motion Across the Pedicle Subtraction Osteotomy Level: An In Vitro Biomechanical Study.
    Hallager DW; Gehrchen M; Dahl B; Harris JA; Gudipally M; Jenkins S; Wu AM; Bucklen BS
    Spine (Phila Pa 1976); 2016 Apr; 41(7):E388-95. PubMed ID: 27018904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal satellite rod constructs to mitigate rod failure following pedicle subtraction osteotomy (PSO): a finite element study.
    Seyed Vosoughi A; Joukar A; Kiapour A; Parajuli D; Agarwal AK; Goel VK; Zavatsky J
    Spine J; 2019 May; 19(5):931-941. PubMed ID: 30414992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iliac screws may not be necessary in long-segment constructs with L5-S1 anterior lumbar interbody fusion: cadaveric study of stability and instrumentation strain.
    Hlubek RJ; Godzik J; Newcomb AGUS; Lehrman JN; de Andrada B; Bohl MA; Farber SH; Kelly BP; Turner JD
    Spine J; 2019 May; 19(5):942-950. PubMed ID: 30419290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of an expandable lateral cage and a static transforaminal lumbar interbody fusion cage with posterior instrumentation in an in vitro spondylolisthesis model.
    Mantell M; Cyriac M; Haines CM; Gudipally M; O'Brien JR
    J Neurosurg Spine; 2016 Jan; 24(1):32-8. PubMed ID: 26384133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adjacent-segment effects of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support.
    Wangsawatwong P; Sawa AGU; de Andrada Pereira B; Lehrman JN; O'Neill LK; Turner JD; Uribe JS; Kelly BP
    J Neurosurg Spine; 2021 Jun; 35(3):263-269. PubMed ID: 34144524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments.
    Sim HB; Murovic JA; Cho BY; Lim TJ; Park J
    J Neurosurg Spine; 2010 Jun; 12(6):700-8. PubMed ID: 20515358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic efficacy of supplemental anterior lumbar interbody fusion at lumbosacral levels in thoracolumbosacral deformity correction with and without pedicle subtraction osteotomy at L3: an in vitro cadaveric study.
    Dahl BT; Harris JA; Gudipally M; Moldavsky M; Khalil S; Bucklen BS
    Eur Spine J; 2017 Nov; 26(11):2773-2781. PubMed ID: 28770402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of double rods and interbody cages on quasistatic range of motion of the spine after lumbopelvic instrumentation.
    Ntilikina Y; Charles YP; Persohn S; Skalli W
    Eur Spine J; 2020 Dec; 29(12):2980-2989. PubMed ID: 32936405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical comparison of multi-rod constructs by satellite rod configurations (in-line vs. lateral) and screw types (monoaxial vs. polyaxial) spanning a lumbar pedicle subtraction osteotomy (PSO): is there an optimal configuration?
    Shekouhi N; Vosoughi AS; Zavatsky JM; Goel VK; Theologis AA
    Eur Spine J; 2022 Nov; 31(11):3050-3059. PubMed ID: 35932334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanics of a lumbar interspinous anchor with transforaminal lumbar interbody fixation.
    Kaibara T; Karahalios DG; Porter RW; Kakarla UK; Reyes PM; Choi SK; Yaqoobi AS; Crawford NR
    World Neurosurg; 2010 May; 73(5):572-7. PubMed ID: 20920945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical in vitro comparison between anterior column realignment and pedicle subtraction osteotomy for severe sagittal imbalance correction.
    La Barbera L; Wilke HJ; Liebsch C; Villa T; Luca A; Galbusera F; Brayda-Bruno M
    Eur Spine J; 2020 Jan; 29(1):36-44. PubMed ID: 31414289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does the Choice of Spinal Interbody Fusion Approach Significantly Affect Adjacent Segment Mobility?
    Wangsawatwong P; Sawa AGU; Pereira BA; Lehrman JN; Turner JD; Uribe JS; Kelly BP
    Spine (Phila Pa 1976); 2021 Nov; 46(21):E1119-E1124. PubMed ID: 34618704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical Stability Afforded by Unilateral Versus Bilateral Pedicle Screw Fixation with and without Interbody Support Using Lateral Lumbar Interbody Fusion.
    Godzik J; Martinez-Del-Campo E; Newcomb AGUS; Reis MT; Perez-Orribo L; Whiting AC; Singh V; Kelly BP; Crawford NR
    World Neurosurg; 2018 May; 113():e439-e445. PubMed ID: 29462730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation: a three-dimensional finite element study.
    Liu X; Ma J; Park P; Huang X; Xie N; Ye X
    BMC Musculoskelet Disord; 2017 Feb; 18(1):63. PubMed ID: 28153036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical stability of transverse connectors in the setting of a thoracic pedicle subtraction osteotomy.
    Lehman RA; Kang DG; Wagner SC; Paik H; Cardoso MJ; Bernstock JD; Dmitriev AE
    Spine J; 2015 Jul; 15(7):1629-35. PubMed ID: 25771755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical analysis of lateral interbody fusion strategies for adjacent segment degeneration in the lumbar spine.
    Metzger MF; Robinson ST; Maldonado RC; Rawlinson J; Liu J; Acosta FL
    Spine J; 2017 Jul; 17(7):1004-1011. PubMed ID: 28323239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.