BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

722 related articles for article (PubMed ID: 35102280)

  • 1. The role of ROS in tumour development and progression.
    Cheung EC; Vousden KH
    Nat Rev Cancer; 2022 May; 22(5):280-297. PubMed ID: 35102280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species in cancer.
    Liou GY; Storz P
    Free Radic Res; 2010 May; 44(5):479-96. PubMed ID: 20370557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression.
    Sarmiento-Salinas FL; Perez-Gonzalez A; Acosta-Casique A; Ix-Ballote A; Diaz A; Treviño S; Rosas-Murrieta NH; Millán-Perez-Peña L; Maycotte P
    Life Sci; 2021 Nov; 284():119942. PubMed ID: 34506835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links?
    D'Souza LC; Mishra S; Chakraborty A; Shekher A; Sharma A; Gupta SC
    Antioxid Redox Signal; 2020 Dec; 33(17):1209-1229. PubMed ID: 31891666
    [No Abstract]   [Full Text] [Related]  

  • 5. Reactive oxygen species in oncogenic transformation.
    Behrend L; Henderson G; Zwacka RM
    Biochem Soc Trans; 2003 Dec; 31(Pt 6):1441-4. PubMed ID: 14641084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ROS signalling in the biology of cancer.
    Moloney JN; Cotter TG
    Semin Cell Dev Biol; 2018 Aug; 80():50-64. PubMed ID: 28587975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estrogen potentiates reactive oxygen species (ROS) tolerance to initiate carcinogenesis and promote cancer malignant transformation.
    Tian H; Gao Z; Wang G; Li H; Zheng J
    Tumour Biol; 2016 Jan; 37(1):141-50. PubMed ID: 26566628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox control in cancer development and progression.
    Helfinger V; Schröder K
    Mol Aspects Med; 2018 Oct; 63():88-98. PubMed ID: 29501614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression.
    Krstić J; Trivanović D; Mojsilović S; Santibanez JF
    Oxid Med Cell Longev; 2015; 2015():654594. PubMed ID: 26078812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of oxidative stress as an anticancer strategy.
    Gorrini C; Harris IS; Mak TW
    Nat Rev Drug Discov; 2013 Dec; 12(12):931-47. PubMed ID: 24287781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting antioxidants for cancer therapy.
    Glasauer A; Chandel NS
    Biochem Pharmacol; 2014 Nov; 92(1):90-101. PubMed ID: 25078786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aiding and abetting roles of NOX oxidases in cellular transformation.
    Block K; Gorin Y
    Nat Rev Cancer; 2012 Sep; 12(9):627-37. PubMed ID: 22918415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosstalk of MicroRNAs and Oxidative Stress in the Pathogenesis of Cancer.
    Lu C; Zhou D; Wang Q; Liu W; Yu F; Wu F; Chen C
    Oxid Med Cell Longev; 2020; 2020():2415324. PubMed ID: 32411322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species and colorectal cancer.
    Lin S; Li Y; Zamyatnin AA; Werner J; Bazhin AV
    J Cell Physiol; 2018 Jul; 233(7):5119-5132. PubMed ID: 29215746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression.
    Ismail T; Kim Y; Lee H; Lee DS; Lee HS
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development.
    Yu W; Tu Y; Long Z; Liu J; Kong D; Peng J; Wu H; Zheng G; Zhao J; Chen Y; Liu R; Li W; Hai C
    Oxid Med Cell Longev; 2022; 2022():2606928. PubMed ID: 35799889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species regulate properties of transformation in UROtsa cells exposed to monomethylarsonous acid by modulating MAPK signaling.
    Eblin KE; Jensen TJ; Wnek SM; Buffington SE; Futscher BW; Gandolfi AJ
    Toxicology; 2009 Jan; 255(1-2):107-14. PubMed ID: 19014992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.