These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35102408)

  • 41. Possibility of a phase contrast electron microscope.
    Parsons DF; Johnson HM
    Appl Opt; 1972 Dec; 11(12):2840-3. PubMed ID: 20119415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-resolution STEM imaging with a quadrant detector--conditions for differential phase contrast microscopy in the weak phase object approximation.
    Majert S; Kohl H
    Ultramicroscopy; 2015 Jan; 148():81-86. PubMed ID: 25461584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accurate modeling of single-particle cryo-EM images quantitates the benefits expected from using Zernike phase contrast.
    Hall RJ; Nogales E; Glaeser RM
    J Struct Biol; 2011 Jun; 174(3):468-75. PubMed ID: 21463690
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Practical aspects of Boersch phase contrast electron microscopy of biological specimens.
    Walter A; Muzik H; Vieker H; Turchanin A; Beyer A; Gölzhäuser A; Lacher M; Steltenkamp S; Schmitz S; Holik P; Kühlbrandt W; Rhinow D
    Ultramicroscopy; 2012 May; 116():62-72. PubMed ID: 22537744
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy.
    Patel B; Watanabe M
    Microsc Microanal; 2014 Feb; 20(1):124-32. PubMed ID: 24423133
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tuning of the Zernike phase-plate for visualization of detailed ultrastructure in complex biological specimens.
    Fukuda Y; Fukazawa Y; Danev R; Shigemoto R; Nagayama K
    J Struct Biol; 2009 Dec; 168(3):476-84. PubMed ID: 19732832
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the role of inelastic scattering in phase-plate transmission electron microscopy.
    Hettler S; Wagner J; Dries M; Oster M; Wacker C; Schröder RR; Gerthsen D
    Ultramicroscopy; 2015 Aug; 155():27-41. PubMed ID: 25879156
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy.
    Danev R; Glaeser RM; Nagayama K
    Ultramicroscopy; 2009 Mar; 109(4):312-25. PubMed ID: 19157711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cepstral scanning transmission electron microscopy imaging of severe lattice distortions.
    Shao YT; Yuan R; Hsiao HW; Yang Q; Hu Y; Zuo JM
    Ultramicroscopy; 2021 Dec; 231():113252. PubMed ID: 33773841
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Event driven 4D STEM acquisition with a Timepix3 detector: Microsecond dwell time and faster scans for high precision and low dose applications.
    Jannis D; Hofer C; Gao C; Xie X; Béché A; Pennycook TJ; Verbeeck J
    Ultramicroscopy; 2022 Mar; 233():113423. PubMed ID: 34837737
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards an optimum design for thin film phase plates.
    Rhinow D
    Ultramicroscopy; 2016 Jan; 160():1-6. PubMed ID: 26397752
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On-chip thin film Zernike phase plate for in-focus transmission electron microscopy imaging of organic materials.
    Kuo PC; Chen IH; Chen CT; Lee KP; Chen CW; Lin CC; Chiu SW; Hsieh YF; Wang YL; Shiue J
    ACS Nano; 2013 Jan; 7(1):465-70. PubMed ID: 23268656
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonlinear phase retrieval from single-distance radiograph.
    Moosmann J; Hofmann R; Bronnikov A; Baumbach T
    Opt Express; 2010 Dec; 18(25):25771-85. PubMed ID: 21164922
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New electrostatic phase plate for phase-contrast transmission electron microscopy and its application for wave-function reconstruction.
    Schultheiss K; Zach J; Gamm B; Dries M; Frindt N; Schröder RR; Gerthsen D
    Microsc Microanal; 2010 Dec; 16(6):785-94. PubMed ID: 20946700
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.
    Woehl T; Keller R
    Ultramicroscopy; 2016 Dec; 171():166-176. PubMed ID: 27690347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scattering intensity distribution dependence on collection angles in annular dark-field STEM-in-SEM images.
    Holm J
    Ultramicroscopy; 2018 Dec; 195():12-20. PubMed ID: 30172856
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of electron diffraction to biological electron microscopy.
    Glaeser RM; Thomas G
    Biophys J; 1969 Sep; 9(9):1073-99. PubMed ID: 4896898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design of a hybrid double-sideband/single-sideband (schlieren) objective aperture suitable for electron microscopy.
    Buijsse B; van Laarhoven FM; Schmid AK; Cambie R; Cabrini S; Jin J; Glaeser RM
    Ultramicroscopy; 2011 Dec; 111(12):1688-95. PubMed ID: 22088443
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Zernike phase contrast cryo-electron tomography of whole mounted frozen cells.
    Fukuda Y; Nagayama K
    J Struct Biol; 2012 Feb; 177(2):484-9. PubMed ID: 22119892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.