These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35102492)

  • 1. Effect of biostimulation and bioaugmentation on biodegradation of high concentrations of 1,4-dioxane.
    Ramos-García ÁA; Walecka-Hutchison C; Freedman DL
    Biodegradation; 2022 Apr; 33(2):157-168. PubMed ID: 35102492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic biodegradation kinetics for 1,4-dioxane under metabolic and cometabolic conditions.
    Barajas-Rodriguez FJ; Freedman DL
    J Hazard Mater; 2018 May; 350():180-188. PubMed ID: 29477886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of in situ biodegradation of 1,4-dioxane under metabolic and cometabolic conditions.
    Barajas-Rodriguez FJ; Murdoch LC; Falta RW; Freedman DL
    J Contam Hydrol; 2019 Jun; 223():103464. PubMed ID: 30910507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,4-Dioxane biodegradation at low temperatures in Arctic groundwater samples.
    Li M; Fiorenza S; Chatham JR; Mahendra S; Alvarez PJ
    Water Res; 2010 May; 44(9):2894-900. PubMed ID: 20199795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic cometabolism of 1,4-dioxane by isobutane-utilizing microorganisms including Rhodococcus rhodochrous strain 21198 in aquifer microcosms: Experimental and modeling study.
    Rolston HM; Hyman MR; Semprini L
    Sci Total Environ; 2019 Dec; 694():133688. PubMed ID: 31756820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling microbial community structures and functions in bioremediation strategies for treating 1,4-dioxane-contaminated groundwater.
    Miao Y; Heintz MB; Bell CH; Johnson NW; Polasko AL; Favero D; Mahendra S
    J Hazard Mater; 2021 Apr; 408():124457. PubMed ID: 33189472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced long-term attenuation of 1,4-dioxane in bioaugmented flow-through aquifer columns.
    da Silva MLB; He Y; Mathieu J; Alvarez PJJ
    Biodegradation; 2020 Jun; 31(3):201-211. PubMed ID: 32468172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates.
    Hatzinger PB; Banerjee R; Rezes R; Streger SH; McClay K; Schaefer CE
    Biodegradation; 2017 Dec; 28(5-6):453-468. PubMed ID: 29022194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaugmenting the poplar rhizosphere to enhance treatment of 1,4-dioxane.
    Simmer R; Mathieu J; da Silva MLB; Lashmit P; Gopishetty S; Alvarez PJJ; Schnoor JL
    Sci Total Environ; 2020 Nov; 744():140823. PubMed ID: 32721670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors.
    Ramalingam V; Cupples AM
    Appl Microbiol Biotechnol; 2020 May; 104(9):4155-4170. PubMed ID: 32170385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane.
    Mahendra S; Grostern A; Alvarez-Cohen L
    Chemosphere; 2013 Mar; 91(1):88-92. PubMed ID: 23237300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bench-scale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California.
    Li M; Van Orden ET; DeVries DJ; Xiong Z; Hinchee R; Alvarez PJ
    Biodegradation; 2015 Feb; 26(1):39-50. PubMed ID: 25280838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of 1,4-dioxane degrading microbial community enriched from uncontaminated soil.
    Tang Y; Wang M; Lee CS; Venkatesan AK; Mao X
    Appl Microbiol Biotechnol; 2023 Feb; 107(2-3):955-969. PubMed ID: 36625913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of 1,4-dioxane in planted and unplanted soil: effect of bioaugmentation with Amycolata sp. CB1190.
    Kelley SL; Aitchison EW; Deshpande M; Schnoor JL; Alvarez PJ
    Water Res; 2001 Nov; 35(16):3791-800. PubMed ID: 12230161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential anaerobic and aerobic bioaugmentation for commingled groundwater contamination of trichloroethene and 1,4-dioxane.
    Li F; Deng D; Zeng L; Abrams S; Li M
    Sci Total Environ; 2021 Jun; 774():145118. PubMed ID: 33610989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metals and organic ligands influence biodegradation of 1,4-dioxane.
    Pornwongthong P; Mulchandani A; Gedalanga PB; Mahendra S
    Appl Biochem Biotechnol; 2014 May; 173(1):291-306. PubMed ID: 24627120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems.
    Zhao L; Lu X; Polasko A; Johnson NW; Miao Y; Yang Z; Mahendra S; Gu B
    Environ Pollut; 2018 Dec; 243(Pt A):573-581. PubMed ID: 30216889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing aerobic biodegradation of 1,2-dibromoethane in groundwater using ethane or propane and inorganic nutrients.
    Hatzinger PB; Streger SH; Begley JF
    J Contam Hydrol; 2015 Jan; 172():61-70. PubMed ID: 25437228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hindrance of 1,4-dioxane biodegradation in microcosms biostimulated with inducing or non-inducing auxiliary substrates.
    Li M; Liu Y; He Y; Mathieu J; Hatton J; DiGuiseppi W; Alvarez PJ
    Water Res; 2017 Apr; 112():217-225. PubMed ID: 28161562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms.
    Shah NW; Thornton SF; Bottrell SH; Spence MJ
    J Contam Hydrol; 2009 Jan; 103(3-4):119-33. PubMed ID: 19008014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.