These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
579 related articles for article (PubMed ID: 35102555)
1. A novel simulation-driven reconstruction approach for x-ray computed tomography. Hsieh J Med Phys; 2022 Apr; 49(4):2245-2258. PubMed ID: 35102555 [TBL] [Abstract][Full Text] [Related]
2. Synthetization of high-dose images using low-dose CT scans. Hsieh J Med Phys; 2024 Jan; 51(1):113-125. PubMed ID: 37975625 [TBL] [Abstract][Full Text] [Related]
3. Deep learning image reconstruction algorithm reduces image noise while alters radiomics features in dual-energy CT in comparison with conventional iterative reconstruction algorithms: a phantom study. Zhong J; Xia Y; Chen Y; Li J; Lu W; Shi X; Feng J; Yan F; Yao W; Zhang H Eur Radiol; 2023 Feb; 33(2):812-824. PubMed ID: 36197579 [TBL] [Abstract][Full Text] [Related]
4. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Greffier J; Hamard A; Pereira F; Barrau C; Pasquier H; Beregi JP; Frandon J Eur Radiol; 2020 Jul; 30(7):3951-3959. PubMed ID: 32100091 [TBL] [Abstract][Full Text] [Related]
5. Comparative assessment of noise properties for two deep learning CT image reconstruction techniques and filtered back projection. Kawashima H; Ichikawa K; Takata T; Seto I Med Phys; 2022 Oct; 49(10):6359-6367. PubMed ID: 36047991 [TBL] [Abstract][Full Text] [Related]
6. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy. Li H; Dolly S; Chen HC; Anastasio MA; Low DA; Li HH; Michalski JM; Thorstad WL; Gay H; Mutic S J Appl Clin Med Phys; 2016 Jul; 17(4):377-390. PubMed ID: 27455472 [TBL] [Abstract][Full Text] [Related]
7. Deep learning image reconstruction for improvement of image quality of abdominal computed tomography: comparison with hybrid iterative reconstruction. Ichikawa Y; Kanii Y; Yamazaki A; Nagasawa N; Nagata M; Ishida M; Kitagawa K; Sakuma H Jpn J Radiol; 2021 Jun; 39(6):598-604. PubMed ID: 33449305 [TBL] [Abstract][Full Text] [Related]
8. Impact of noise reduction on radiation dose reduction potential of virtual monochromatic spectral images: Comparison of phantom images with conventional 120 kVp images using deep learning image reconstruction and hybrid iterative reconstruction. Masuda S; Yamada Y; Minamishima K; Owaki Y; Yamazaki A; Jinzaki M Eur J Radiol; 2022 Apr; 149():110198. PubMed ID: 35168172 [TBL] [Abstract][Full Text] [Related]
9. Investigating the role of imaging factors in the variability of CT-based texture analysis metrics. Varghese BA; Cen SY; Jensen K; Levy J; Andersen HK; Schulz A; Lei X; Duddalwar VA; Goodenough DJ J Appl Clin Med Phys; 2024 Apr; 25(4):e14192. PubMed ID: 37962032 [TBL] [Abstract][Full Text] [Related]
11. Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction. Park J; Shin J; Min IK; Bae H; Kim YE; Chung YE Korean J Radiol; 2022 Apr; 23(4):402-412. PubMed ID: 35289146 [TBL] [Abstract][Full Text] [Related]
12. CT image quality evaluation in the age of deep learning: trade-off between functionality and fidelity. Yang K; Cao J; Pisuchpen N; Kambadakone A; Gupta R; Marschall T; Li X; Liu B Eur Radiol; 2023 Apr; 33(4):2439-2449. PubMed ID: 36350391 [TBL] [Abstract][Full Text] [Related]
14. Deep learning-based low-dose CT simulator for non-linear reconstruction methods. Tunissen SAM; Moriakov N; Mikerov M; Smit EJ; Sechopoulos I; Teuwen J Med Phys; 2024 Sep; 51(9):6046-6060. PubMed ID: 38843540 [TBL] [Abstract][Full Text] [Related]
15. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization. Dong X; Niu T; Zhu L Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388 [TBL] [Abstract][Full Text] [Related]
16. Noise power spectrum properties of deep learning-based reconstruction and iterative reconstruction algorithms: Phantom and clinical study. Funama Y; Nakaura T; Hasegawa A; Sakabe D; Oda S; Kidoh M; Nagayama Y; Hirai T Eur J Radiol; 2023 Aug; 165():110914. PubMed ID: 37295358 [TBL] [Abstract][Full Text] [Related]
17. Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: A phantom study. Racine D; Becce F; Viry A; Monnin P; Thomsen B; Verdun FR; Rotzinger DC Phys Med; 2020 Aug; 76():28-37. PubMed ID: 32574999 [TBL] [Abstract][Full Text] [Related]
18. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v. Lim K; Kwon H; Cho J; Oh J; Yoon S; Kang M; Ha D; Lee J; Kang E J Comput Assist Tomogr; 2015; 39(3):443-8. PubMed ID: 25654782 [TBL] [Abstract][Full Text] [Related]
19. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm. Solomon J; Lyu P; Marin D; Samei E Med Phys; 2020 Sep; 47(9):3961-3971. PubMed ID: 32506661 [TBL] [Abstract][Full Text] [Related]
20. Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. Klink T; Obmann V; Heverhagen J; Stork A; Adam G; Begemann P Eur J Radiol; 2014 Sep; 83(9):1645-54. PubMed ID: 25037931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]