These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35102729)

  • 21. Frontiers of optofluidics in synthetic biology.
    Tan C; Lo SJ; LeDuc PR; Cheng CM
    Lab Chip; 2012 Oct; 12(19):3654-65. PubMed ID: 22895798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms.
    Choi J; Kang M; Jung JH
    Sci Rep; 2015 Nov; 5():15983. PubMed ID: 26522006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitivity improvement in fluorescence-based particle detection.
    Kettlitz SW; Moosmann C; Valouch S; Lemmer U
    Cytometry A; 2014 Sep; 85(9):746-55. PubMed ID: 24938222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor.
    Cheri MS; Shahraki H; Sadeghi J; Moghaddam MS; Latifi H
    Biomicrofluidics; 2014 Sep; 8(5):054123. PubMed ID: 25584118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoliter droplet viscometer with additive-free operation.
    Livak-Dahl E; Lee J; Burns MA
    Lab Chip; 2013 Jan; 13(2):297-301. PubMed ID: 23192296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid Calibration of Nanoliter per Second Flow Rate by Image Processing Technology.
    Luo J; Yang C; Shen Y
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review.
    Zhang Y; Watts BR; Guo T; Zhang Z; Xu C; Fang Q
    Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics.
    Chung SE; Lee SA; Kim J; Kwon S
    Lab Chip; 2009 Oct; 9(19):2845-50. PubMed ID: 19967123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Droplet-based optofluidic systems for measuring enzyme kinetics.
    Hess D; Yang T; Stavrakis S
    Anal Bioanal Chem; 2020 May; 412(14):3265-3283. PubMed ID: 31853606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.
    Chin LK; Liu AQ; Soh YC; Lim CS; Lin CL
    Lab Chip; 2010 Apr; 10(8):1072-8. PubMed ID: 20358116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments.
    Hassanzadeh-Barforoushi A; Warkiani ME; Gallego-Ortega D; Liu G; Barber T
    Biosens Bioelectron; 2020 May; 155():112113. PubMed ID: 32217335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Throughput Optofluidic Acquisition of Microdroplets in Microfluidic Systems.
    Hayat Z; El Abed AI
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallel mixing of photolithographically defined nanoliter volumes using elastomeric microvalve arrays.
    Li N; Hsu CH; Folch A
    Electrophoresis; 2005 Oct; 26(19):3758-64. PubMed ID: 16196107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On chip optofluidic low-pressure monitoring device.
    Chandra Roy A; Bangalore Subramanya S; Manohar Rudresh S; Venkataraman V
    J Biophotonics; 2021 Mar; 14(3):e202000381. PubMed ID: 33169514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calibration methods for flow rates down to 5 nL/min and validation methodology.
    Mills C; Batista E; Bissig H; Ogheard F; Boudaoud AW; Büker O; Stolt K; Morgan J; Kartmann S; Thiemann K; Miotto G; Niemann A; Klein S; Ratering G; Lötters J
    Biomed Tech (Berl); 2023 Feb; 68(1):13-27. PubMed ID: 35981719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionophore-Based Biphasic Chemical Sensing in Droplet Microfluidics.
    Wang X; Sun M; Ferguson SA; Hoff JD; Qin Y; Bailey RC; Meyerhoff ME
    Angew Chem Int Ed Engl; 2019 Jun; 58(24):8092-8096. PubMed ID: 30997728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.
    Cheri MS; Latifi H; Sadeghi J; Moghaddam MS; Shahraki H; Hajghassem H
    Analyst; 2014 Jan; 139(2):431-8. PubMed ID: 24291805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optofluidic control using photothermal nanoparticles.
    Liu GL; Kim J; Lu Y; Lee LP
    Nat Mater; 2006 Jan; 5(1):27-32. PubMed ID: 16362056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulations and experimental demonstration of three different regimes of optofluidic manipulation.
    Wang H; Tarriela J; Shiveshwarkar P; Pyayt A
    Appl Opt; 2021 Jan; 60(3):593-599. PubMed ID: 33690432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel tuneable optical elements based on nanoparticle suspensions in microfluidics.
    Kayani AA; Zhang C; Khoshmanesh K; Campbell JL; Mitchell A; Kalantar-Zadeh K
    Electrophoresis; 2010 Mar; 31(6):1071-9. PubMed ID: 20309917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.