These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35102883)

  • 1. End-to-end orientation estimation from 2D cryo-EM images.
    Lian R; Huang B; Wang L; Liu Q; Lin Y; Ling H
    Acta Crystallogr D Struct Biol; 2022 Feb; 78(Pt 2):174-186. PubMed ID: 35102883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fast Image Alignment Approach for 2D Classification of Cryo-EM Images Using Spectral Clustering.
    Wang X; Lu Y; Liu J
    Curr Issues Mol Biol; 2021 Oct; 43(3):1652-1668. PubMed ID: 34698131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Progress in filters for denoising cryo-electron microscopy images].
    Huang XR; Li S; Gao S
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 53(2):425-433. PubMed ID: 33879921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction.
    Al-Azzawi A; Ouadou A; Duan Y; Cheng J
    BMC Bioinformatics; 2020 Dec; 21(Suppl 21):534. PubMed ID: 33371884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPREAD: A Fully Automated Toolkit for Single-Particle Cryogenic Electron Microscopy Data 3D Reconstruction with Image-Network-Aided Orientation Assignment.
    Xie R; Chen YX; Cai JM; Yang Y; Shen HB
    J Chem Inf Model; 2020 May; 60(5):2614-2625. PubMed ID: 31990536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AutoCryoPicker: an unsupervised learning approach for fully automated single particle picking in Cryo-EM images.
    Al-Azzawi A; Ouadou A; Tanner JJ; Cheng J
    BMC Bioinformatics; 2019 Jun; 20(1):326. PubMed ID: 31195977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous cryo-EM projection image classification using a two-stage spectral clustering based on novel distance measures.
    Wang X; Lu Y; Lin X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35255494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimod--an automated approach for constructing and optimizing initial models for single-particle electron microscopy.
    Lyumkis D; Vinterbo S; Potter CS; Carragher B
    J Struct Biol; 2013 Dec; 184(3):417-26. PubMed ID: 24161732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clustering Enhancement of Noisy Cryo-Electron Microscopy Single-Particle Images with a Network Structural Similarity Metric.
    Yin S; Zhang B; Yang Y; Huang Y; Shen HB
    J Chem Inf Model; 2019 Apr; 59(4):1658-1667. PubMed ID: 30676727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Robust Single-Particle Cryo-Electron Microscopy (cryo-EM) Processing Workflow with cryoSPARC, RELION, and Scipion.
    DiIorio MC; Kulczyk AW
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35104261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.
    Zhu Y; Ouyang Q; Mao Y
    BMC Bioinformatics; 2017 Jul; 18(1):348. PubMed ID: 28732461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D reconstruction from cryo-EM projection images using two spherical embeddings.
    Lu Y; Liu J; Zhu L; Zhang B; He J
    Commun Biol; 2022 Apr; 5(1):304. PubMed ID: 35379919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid near-atomic resolution single-particle 3D reconstruction with SIMPLE.
    Reboul CF; Kiesewetter S; Eager M; Belousoff M; Cui T; De Sterck H; Elmlund D; Elmlund H
    J Struct Biol; 2018 Nov; 204(2):172-181. PubMed ID: 30092280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SubspaceEM: A fast maximum-a-posteriori algorithm for cryo-EM single particle reconstruction.
    Dvornek NC; Sigworth FJ; Tagare HD
    J Struct Biol; 2015 May; 190(2):200-14. PubMed ID: 25839831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of HIV-1 capsid assemblies by cryo-electron microscopy and iterative helical real-space reconstruction.
    Meng X; Zhao G; Zhang P
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21860371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting consistent common lines in cryo-EM by voting.
    Singer A; Coifman RR; Sigworth FJ; Chester DW; Shkolnisky Y
    J Struct Biol; 2010 Mar; 169(3):312-22. PubMed ID: 19925867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Zernike-moment-based non-local denoising filter for cryo-EM images.
    Wang J; Yin C
    Sci China Life Sci; 2013 Apr; 56(4):384-90. PubMed ID: 23564187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise-Transfer2Clean: denoising cryo-EM images based on noise modeling and transfer.
    Li H; Zhang H; Wan X; Yang Z; Li C; Li J; Han R; Zhu P; Zhang F
    Bioinformatics; 2022 Mar; 38(7):2022-2029. PubMed ID: 35134862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated picking of amyloid fibrils from cryo-EM images for helical reconstruction with RELION.
    Thurber KR; Yin Y; Tycko R
    J Struct Biol; 2021 Jun; 213(2):107736. PubMed ID: 33831509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparseness and Smoothness Regularized Imaging for improving the resolution of Cryo-EM single-particle reconstruction.
    Luo Z; Campos-Acevedo AA; Lv L; Wang Q; Ma J
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33402531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.