BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35103261)

  • 41. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna.
    Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H
    PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lipid-coated mesoporous silica nanoparticles for anti-viral applications via delivery of CRISPR-Cas9 ribonucleoproteins.
    LaBauve AE; Saada EA; Jones IKA; Mosesso R; Noureddine A; Techel J; Gomez A; Collette N; Sherman MB; Serda RE; Butler KS; Brinker CJ; Schoeniger JS; Sasaki D; Negrete OA
    Sci Rep; 2023 Apr; 13(1):6873. PubMed ID: 37105997
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lipid nanoparticles loaded with ribonucleoprotein-oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition.
    Suzuki Y; Onuma H; Sato R; Sato Y; Hashiba A; Maeki M; Tokeshi M; Kayesh MEH; Kohara M; Tsukiyama-Kohara K; Harashima H
    J Control Release; 2021 Feb; 330():61-71. PubMed ID: 33333121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing.
    Xu Y; Liu R; Dai Z
    Nanoscale; 2020 Oct; 12(41):21001-21014. PubMed ID: 33078813
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy.
    Wan T; Chen Y; Pan Q; Xu X; Kang Y; Gao X; Huang F; Wu C; Ping Y
    J Control Release; 2020 Jun; 322():236-247. PubMed ID: 32169537
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electroporation-Mediated Delivery of Cas9 Ribonucleoproteins Results in High Levels of Gene Editing in Primary Hepatocytes.
    Rathbone T; Ates I; Fernando L; Addlestone E; Lee CM; Richards VP; Cottle RN
    CRISPR J; 2022 Jun; 5(3):397-409. PubMed ID: 35238624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient 'hit-and-run' genome editing.
    Lyu P; Javidi-Parsijani P; Atala A; Lu B
    Nucleic Acids Res; 2019 Sep; 47(17):e99. PubMed ID: 31299082
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tissue-Specific Delivery of CRISPR Therapeutics: Strategies and Mechanisms of Non-Viral Vectors.
    Shalaby K; Aouida M; El-Agnaf O
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33027946
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation.
    Sun W; Wang J; Hu Q; Zhou X; Khademhosseini A; Gu Z
    Sci Adv; 2020 May; 6(21):eaba2983. PubMed ID: 32490205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins.
    Subburaj S; Chung SJ; Lee C; Ryu SM; Kim DH; Kim JS; Bae S; Lee GJ
    Plant Cell Rep; 2016 Jul; 35(7):1535-44. PubMed ID: 26825596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR-Cas9-mediated genome editing in apple and grapevine.
    Osakabe Y; Liang Z; Ren C; Nishitani C; Osakabe K; Wada M; Komori S; Malnoy M; Velasco R; Poli M; Jung MH; Koo OJ; Viola R; Nagamangala Kanchiswamy C
    Nat Protoc; 2018 Dec; 13(12):2844-2863. PubMed ID: 30390050
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-purity production and precise editing of DNA base editing ribonucleoproteins.
    Jang HK; Jo DH; Lee SN; Cho CS; Jeong YK; Jung Y; Yu J; Kim JH; Woo JS; Bae S
    Sci Adv; 2021 Aug; 7(35):. PubMed ID: 34452911
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications.
    Cheng H; Zhang F; Ding Y
    Pharmaceutics; 2021 Oct; 13(10):. PubMed ID: 34683943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome editing reagent delivery in plants.
    Ghogare R; Ludwig Y; Bueno GM; Slamet-Loedin IH; Dhingra A
    Transgenic Res; 2021 Aug; 30(4):321-335. PubMed ID: 33728594
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing.
    Chin JS; Chooi WH; Wang H; Ong W; Leong KW; Chew SY
    Acta Biomater; 2019 May; 90():60-70. PubMed ID: 30978509
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.
    Liu C; Zhang L; Liu H; Cheng K
    J Control Release; 2017 Nov; 266():17-26. PubMed ID: 28911805
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model.
    Wu W; Lu Z; Li F; Wang W; Qian N; Duan J; Zhang Y; Wang F; Chen T
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1660-1665. PubMed ID: 28137859
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Delivery of CRISPR/Cas9 for therapeutic genome editing.
    Xu X; Wan T; Xin H; Li D; Pan H; Wu J; Ping Y
    J Gene Med; 2019 Jul; 21(7):e3107. PubMed ID: 31237055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.