These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 35103373)
1. Nanoflowers: A New Approach of Enzyme Immobilization. da Costa FP; Cipolatti EP; Furigo Junior A; Oliveira Henriques R Chem Rec; 2022 Apr; 22(4):e202100293. PubMed ID: 35103373 [TBL] [Abstract][Full Text] [Related]
2. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Altinkaynak C; Tavlasoglu S; Özdemir N; Ocsoy I Enzyme Microb Technol; 2016 Nov; 93-94():105-112. PubMed ID: 27702469 [TBL] [Abstract][Full Text] [Related]
3. Immobilized enzymes in inorganic hybrid nanoflowers for biocatalytic and biosensing applications. Liang X; Liu Y; Wen K; Jiang W; Li Q J Mater Chem B; 2021 Sep; 9(37):7597-7607. PubMed ID: 34596205 [TBL] [Abstract][Full Text] [Related]
4. Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. Bilal M; Asgher M; Shah SZH; Iqbal HMN Int J Biol Macromol; 2019 Aug; 135():677-690. PubMed ID: 31152838 [TBL] [Abstract][Full Text] [Related]
5. Nano-organic supports for enzyme immobilization: Scopes and perspectives. Zahirinejad S; Hemmati R; Homaei A; Dinari A; Hosseinkhani S; Mohammadi S; Vianello F Colloids Surf B Biointerfaces; 2021 Aug; 204():111774. PubMed ID: 33932893 [TBL] [Abstract][Full Text] [Related]
6. Enzyme Immobilization on Functionalized Graphene Oxide Nanosheets: Efficient and Robust Biocatalysts. Soozanipour A; Taheri-Kafrani A Methods Enzymol; 2018; 609():371-403. PubMed ID: 30244798 [TBL] [Abstract][Full Text] [Related]
7. Understanding intricacies of bioinspired organic-inorganic hybrid nanoflowers: A quest to achieve enhanced biomolecules immobilization for biocatalytic, biosensing and bioremediation applications. Dube S; Rawtani D Adv Colloid Interface Sci; 2021 Sep; 295():102484. PubMed ID: 34358991 [TBL] [Abstract][Full Text] [Related]
9. Armoring bio-catalysis via structural and functional coordination between nanostructured materials and lipases for tailored applications. Bilal M; Iqbal HMN Int J Biol Macromol; 2021 Jan; 166():818-838. PubMed ID: 33144258 [TBL] [Abstract][Full Text] [Related]
10. Enzyme Immobilization in Covalent Organic Frameworks: Strategies and Applications in Biocatalysis. Oliveira FL; de S França A; de Castro AM; Alves de Souza ROM; Esteves PM; Gonçalves RSB Chempluschem; 2020 Sep; 85(9):2051-2066. PubMed ID: 32909691 [TBL] [Abstract][Full Text] [Related]
11. Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts. Wang Z; Wang R; Geng Z; Luo X; Jia J; Pang S; Fan X; Bilal M; Cui J Crit Rev Biotechnol; 2024 Jun; 44(4):674-697. PubMed ID: 37032548 [TBL] [Abstract][Full Text] [Related]
12. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis - A review. Gan J; Bagheri AR; Aramesh N; Gul I; Franco M; Almulaiky YQ; Bilal M Int J Biol Macromol; 2021 Jan; 167():502-515. PubMed ID: 33279559 [TBL] [Abstract][Full Text] [Related]
13. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Sun J; Ge J; Liu W; Lan M; Zhang H; Wang P; Wang Y; Niu Z Nanoscale; 2014 Jan; 6(1):255-62. PubMed ID: 24186239 [TBL] [Abstract][Full Text] [Related]
14. Organic-inorganic hybrid nanoflowers: The known, the unknown, and the future. Jafari-Nodoushan H; Mojtabavi S; Faramarzi MA; Samadi N Adv Colloid Interface Sci; 2022 Nov; 309():102780. PubMed ID: 36182695 [TBL] [Abstract][Full Text] [Related]
15. Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes. Lee HR; Chung M; Kim MI; Ha SH Enzyme Microb Technol; 2017 Oct; 105():24-29. PubMed ID: 28756857 [TBL] [Abstract][Full Text] [Related]
16. Enzyme Immobilization using Covalent Organic Frameworks: From Synthetic Strategy to COFs Functional Role. Fan X; Zhai S; Xue S; Zhi L ACS Appl Mater Interfaces; 2024 Aug; 16(31):40371-40390. PubMed ID: 39072501 [TBL] [Abstract][Full Text] [Related]
17. Controllable Synthesis of Hemoglobin-Metal Phosphate Organic-Inorganic Hybrid Nanoflowers and Their Applications in Biocatalysis. Gao J; Liu H; Tong C Inorg Chem; 2023 Aug; 62(34):13812-13823. PubMed ID: 37584534 [TBL] [Abstract][Full Text] [Related]
18. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Cui J; Zhao Y; Liu R; Zhong C; Jia S Sci Rep; 2016 Jun; 6():27928. PubMed ID: 27297609 [TBL] [Abstract][Full Text] [Related]
19. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Shcharbin D; Halets-Bui I; Abashkin V; Dzmitruk V; Loznikova S; Odabaşı M; Acet Ö; Önal B; Özdemir N; Shcharbina N; Bryszewska M Colloids Surf B Biointerfaces; 2019 Oct; 182():110354. PubMed ID: 31325775 [TBL] [Abstract][Full Text] [Related]
20. Enzyme-Immobilized Metal-Organic Frameworks: From Preparation to Application. Li JJ; Yin L; Wang ZF; Jing YC; Jiang ZL; Ding Y; Wang HS Chem Asian J; 2022 Nov; 17(21):e202200751. PubMed ID: 36029234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]