These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 35103487)
1. Raman-Deuterium Isotope Probing and Metagenomics Reveal the Drought Tolerance of the Soil Microbiome and Its Promotion of Plant Growth. No JH; Nishu SD; Hong JK; Lyou ES; Kim MS; Wee GN; Lee TK mSystems; 2022 Feb; 7(1):e0124921. PubMed ID: 35103487 [TBL] [Abstract][Full Text] [Related]
2. Patterns in the Microbial Community of Salt-Tolerant Plants and the Functional Genes Associated with Salt Stress Alleviation. Zheng Y; Xu Z; Liu H; Liu Y; Zhou Y; Meng C; Ma S; Xie Z; Li Y; Zhang CS Microbiol Spectr; 2021 Oct; 9(2):e0076721. PubMed ID: 34704793 [TBL] [Abstract][Full Text] [Related]
3. Beneficial Root-Associated Microbiome during Drought and Flooding Stress in Plants. Nio SA; Mantilen Ludong DP Pak J Biol Sci; 2023 Apr; 26(5):287-299. PubMed ID: 37859559 [TBL] [Abstract][Full Text] [Related]
4. Microbial Drivers of Plant Performance during Drought Depend upon Community Composition and the Greater Soil Environment. Moore ER; Carter KR; Heneghan JP; Steadman CR; Nachtsheim AC; Anderson-Cook C; Dickman LT; Newman BD; Dunbar J; Sevanto S; Albright MBN Microbiol Spectr; 2023 Mar; 11(2):e0147622. PubMed ID: 36943043 [TBL] [Abstract][Full Text] [Related]
5. Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: a study on soybean growth and development. Ren H; Zhang F; Zhu X; Lamlom SF; Zhao K; Zhang B; Wang J Front Microbiol; 2023; 14():1233351. PubMed ID: 37799597 [TBL] [Abstract][Full Text] [Related]
6. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Phour M; Sindhu SS Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564 [TBL] [Abstract][Full Text] [Related]
7. Raman-deuterium isotope probing to study metabolic activities of single bacterial cells in human intestinal microbiota. Wang Y; Xu J; Kong L; Liu T; Yi L; Wang H; Huang WE; Zheng C Microb Biotechnol; 2020 Mar; 13(2):572-583. PubMed ID: 31821744 [TBL] [Abstract][Full Text] [Related]
8. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. Rai S; Omar AF; Rehan M; Al-Turki A; Sagar A; Ilyas N; Sayyed RZ; Hasanuzzaman M Planta; 2022 Dec; 257(2):27. PubMed ID: 36583789 [TBL] [Abstract][Full Text] [Related]
9. Phyllosphere Community Assembly and Response to Drought Stress on Common Tropical and Temperate Forage Grasses. Bechtold EK; Ryan S; Moughan SE; Ranjan R; Nüsslein K Appl Environ Microbiol; 2021 Aug; 87(17):e0089521. PubMed ID: 34161142 [TBL] [Abstract][Full Text] [Related]
10. Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Zhang H; Sun X; Dai M Plant Commun; 2022 Jan; 3(1):100228. PubMed ID: 35059626 [TBL] [Abstract][Full Text] [Related]
11. Microbiome Diversity in Cotton Rhizosphere Under Normal and Drought Conditions. Ullah A; Akbar A; Luo Q; Khan AH; Manghwar H; Shaban M; Yang X Microb Ecol; 2019 Feb; 77(2):429-439. PubMed ID: 30196314 [TBL] [Abstract][Full Text] [Related]
12. Unveiling the Wheat Microbiome under Varied Agricultural Field Conditions. Jaiswal S; Aneja B; Jagannadham J; Pandey B; Chhokar RS; Gill SC; Ahlawat OP; Kumar A; Angadi UB; Rai A; Tiwari R; Iquebal MA; Kumar D Microbiol Spectr; 2022 Dec; 10(6):e0263322. PubMed ID: 36445165 [TBL] [Abstract][Full Text] [Related]
13. The endophytome (plant-associated microbiome): methodological approaches, biological aspects, and biotech applications. de Medeiros Azevedo T; Aburjaile FF; Ferreira-Neto JRC; Pandolfi V; Benko-Iseppon AM World J Microbiol Biotechnol; 2021 Oct; 37(12):206. PubMed ID: 34708327 [TBL] [Abstract][Full Text] [Related]
14. Characterization of tetracycline-resistant microbiome in soil-plant systems by combination of H Fan H; Wu S; Dong W; Li X; Dong Y; Wang S; Zhu YG; Zhuang X J Hazard Mater; 2021 Oct; 420():126440. PubMed ID: 34280721 [TBL] [Abstract][Full Text] [Related]
15. Bioprospecting the roles of Trichoderma in alleviating plants' drought tolerance: Principles, mechanisms of action, and prospects. Akbari SI; Prismantoro D; Permadi N; Rossiana N; Miranti M; Mispan MS; Mohamed Z; Doni F Microbiol Res; 2024 Jun; 283():127665. PubMed ID: 38452552 [TBL] [Abstract][Full Text] [Related]
16. Bioprospecting Soil Bacteria from Arid Zones to Increase Plant Tolerance to Drought: Growth and Biochemical Status of Maize Inoculated with Plant Growth-Promoting Bacteria Isolated from Sal Island, Cape Verde. Cruz C; Cardoso P; Santos J; Matos D; Figueira E Plants (Basel); 2022 Oct; 11(21):. PubMed ID: 36365367 [TBL] [Abstract][Full Text] [Related]
17. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture. Qin Y; Druzhinina IS; Pan X; Yuan Z Biotechnol Adv; 2016 Nov; 34(7):1245-1259. PubMed ID: 27587331 [TBL] [Abstract][Full Text] [Related]
18. Resilience and Assemblage of Soil Microbiome in Response to Chemical Contamination Combined with Plant Growth. Jiao S; Chen W; Wei G Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30658982 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of Plant Productivity in the Post-Genomics Era. Thao NP; Tran LS Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678 [TBL] [Abstract][Full Text] [Related]
20. Insights into the plant responses to drought and decoding the potential of root associated microbiome for inducing drought tolerance. Mathur P; Roy S Physiol Plant; 2021 Jun; 172(2):1016-1029. PubMed ID: 33491182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]