These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 35103714)

  • 21. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.
    Kinnunen M; Kauppila A; Karmenyan A; Myllylä R
    Opt Lett; 2011 Sep; 36(18):3554-6. PubMed ID: 21931388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Force interactions between Yersiniae lipopolysaccharides and monoclonal antibodies: An optical tweezers study.
    Konyshev I; Byvalov A; Ananchenko B; Fakhrullin R; Danilushkina A; Dudina L
    J Biomech; 2020 Jan; 99():109504. PubMed ID: 31753213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical modeling of optical levitation and trapping of the "stuck" particles with a pulsed optical tweezers.
    Deng JL; Wei Q; Wang YZ; Li YQ
    Opt Express; 2005 May; 13(10):3673-80. PubMed ID: 19495274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical force characterization in manipulating live cells with optical tweezers.
    Wu Y; Sun D; Huang W
    J Biomech; 2011 Feb; 44(4):741-6. PubMed ID: 21087769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. End-faced waveguide mediated optical propulsion of microspheres and single cells in a microfluidic device.
    Lilge L; Shah D; Charron L
    Lab Chip; 2013 Jul; 13(13):2554-62. PubMed ID: 23411834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative measurements of absolute dielectrophoretic forces using optical tweezers.
    Hong Y; Pyo JW; Baek SH; Lee SW; Yoon DS; No K; Kim BM
    Opt Lett; 2010 Jul; 35(14):2493-5. PubMed ID: 20634874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-chip supercontinuum optical trapping and resonance excitation of microspheres.
    Nitkowski A; Gondarenko A; Lipson M
    Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing Raman tweezers by phase-sensitive detection.
    Rusciano G; De Luca AC; Sasso A; Pesce G
    Anal Chem; 2007 May; 79(10):3708-15. PubMed ID: 17444615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct measurement of optical trapping force gradient on polystyrene microspheres using a carbon nanotube mechanical resonator.
    Yasuda M; Takei K; Arie T; Akita S
    Sci Rep; 2017 Jun; 7(1):2825. PubMed ID: 28588196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of Mie resonances on trapping in optical tweezers: comment.
    Sun B; Grier DG
    Opt Express; 2009 Feb; 17(4):2658-60; discussion 2661-2. PubMed ID: 19219169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical clearing at cellular level.
    Kinnunen M; Bykov AV; Tuorila J; Haapalainen T; Karmenyan AV; Tuchin VV
    J Biomed Opt; 2014 Jul; 19(7):71409. PubMed ID: 24615672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
    Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG
    Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stretching short sequences of DNA with constant force axial optical tweezers.
    Raghunathan K; Milstein JN; Meiners JC
    J Vis Exp; 2011 Oct; (56):e3405. PubMed ID: 22025209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion.
    Fällman E; Schedin S; Jass J; Andersson M; Uhlin BE; Axner O
    Biosens Bioelectron; 2004 Jun; 19(11):1429-37. PubMed ID: 15093214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-distance axial trapping with focused annular laser beams.
    Lei M; Li Z; Yan S; Yao B; Dan D; Qi Y; Qian J; Yang Y; Gao P; Ye T
    PLoS One; 2013; 8(3):e57984. PubMed ID: 23505449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radiation torque and force on optically trapped linear nanostructures.
    Borghese F; Denti P; Saija R; Iatì MA; Maragò OM
    Phys Rev Lett; 2008 Apr; 100(16):163903. PubMed ID: 18518199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physics of optical tweezers.
    Nieminen TA; Knöner G; Heckenberg NR; Rubinsztein-Dunlop H
    Methods Cell Biol; 2007; 82():207-36. PubMed ID: 17586258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of probe-laser focal offsets for single-particle tracking.
    Chang AT; Chang YR; Chi S; Hsu L
    Appl Opt; 2012 Aug; 51(23):5643-8. PubMed ID: 22885576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical trapping of two different microparticles by a double-tapered fiber probe.
    Wang W; Liu Z; Chen C; Zeng X; Wang K; Zhang B
    Opt Express; 2023 Mar; 31(6):9669-9677. PubMed ID: 37157531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.