These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35103723)

  • 1. Immunoaffinity monoliths for multiplexed extraction of preterm birth biomarkers from human blood serum in 3D printed microfluidic devices.
    Almughamsi HM; Howell MK; Parry SR; Esene JE; Nielsen JB; Nordin GP; Woolley AT
    Analyst; 2022 Feb; 147(4):734-743. PubMed ID: 35103723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed microfluidic devices with immunoaffinity monoliths for extraction of preterm birth biomarkers.
    Parker EK; Nielsen AV; Beauchamp MJ; Almughamsi HM; Nielsen JB; Sonker M; Gong H; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2019 Aug; 411(21):5405-5413. PubMed ID: 30382326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printed microfluidic devices for integrated solid-phase extraction and microchip electrophoresis of preterm birth biomarkers.
    Esene JE; Burningham AJ; Tahir A; Nordin GP; Woolley AT
    Anal Chim Acta; 2024 Apr; 1296():342338. PubMed ID: 38401930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printed Microfluidic Devices for Solid-Phase Extraction and On-Chip Fluorescent Labeling of Preterm Birth Risk Biomarkers.
    Bickham AV; Pang C; George BQ; Topham DJ; Nielsen JB; Nordin GP; Woolley AT
    Anal Chem; 2020 Sep; 92(18):12322-12329. PubMed ID: 32829631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printed Microfluidic Devices for Microchip Electrophoresis of Preterm Birth Biomarkers.
    Beauchamp MJ; Nielsen AV; Gong H; Nordin GP; Woolley AT
    Anal Chem; 2019 Jun; 91(11):7418-7425. PubMed ID: 31056901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed microfluidic device for automated, pressure-driven, valve-injected microchip electrophoresis of preterm birth biomarkers.
    Esene JE; Boaks M; Bickham AV; Nordin GP; Woolley AT
    Mikrochim Acta; 2022 Apr; 189(5):204. PubMed ID: 35484354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetically operated microfluidic devices for integrated immunoaffinity monolith extraction and electrophoretic separation of preterm birth biomarkers.
    Sonker M; Parker EK; Nielsen AV; Sahore V; Woolley AT
    Analyst; 2017 Dec; 143(1):224-231. PubMed ID: 29136068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance microchip electrophoresis separations of preterm birth biomarkers using 3D printed microfluidic devices.
    Esene JE; Nasman PR; Miner DS; Nordin GP; Woolley AT
    J Chromatogr A; 2023 Sep; 1706():464242. PubMed ID: 37595419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis.
    Sahore V; Sonker M; Nielsen AV; Knob R; Kumar S; Woolley AT
    Anal Bioanal Chem; 2018 Jan; 410(3):933-941. PubMed ID: 28799040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated electrokinetically driven microfluidic devices with pH-mediated solid-phase extraction coupled to microchip electrophoresis for preterm birth biomarkers.
    Sonker M; Knob R; Sahore V; Woolley AT
    Electrophoresis; 2017 Jul; 38(13-14):1743-1754. PubMed ID: 28272749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-Chip Fluorescent Labeling using Reversed-phase Monoliths and Microchip Electrophoretic Separations of Selected Preterm Birth Biomarkers.
    Sonker M; Yang R; Sahore V; Kumar S; Woolley AT
    Anal Methods; 2016 Nov; 8(43):7739-7746. PubMed ID: 28496521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput 3D-Printed Model of the Feto-Maternal Interface for the Discovery and Development of Preterm Birth Therapies.
    Cherukuri R; Kammala AK; Thomas TJ; Saylor L; Richardson L; Kim S; Ferrer M; Acedo C; Song MJ; Gaharwar AK; Menon R; Han A
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):41892-41906. PubMed ID: 39078878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements.
    Monia Kabandana GK; Jones CG; Sharifi SK; Chen C
    ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow.
    Woo SO; Oh M; Choi Y
    STAR Protoc; 2022 Jun; 3(2):101376. PubMed ID: 35573475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis.
    Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T
    ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.
    Beauchamp MJ; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Paper-Based Microfluidic Analytical Devices Integrated with a Plasma Separation Membrane for the Detection of Biomarkers in Whole Blood.
    Park C; Kim HR; Kim SK; Jeong IK; Pyun JC; Park S
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36428-36434. PubMed ID: 31512861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.