These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Integrated electrokinetically driven microfluidic devices with pH-mediated solid-phase extraction coupled to microchip electrophoresis for preterm birth biomarkers. Sonker M; Knob R; Sahore V; Woolley AT Electrophoresis; 2017 Jul; 38(13-14):1743-1754. PubMed ID: 28272749 [TBL] [Abstract][Full Text] [Related]
11. On-Chip Fluorescent Labeling using Reversed-phase Monoliths and Microchip Electrophoretic Separations of Selected Preterm Birth Biomarkers. Sonker M; Yang R; Sahore V; Kumar S; Woolley AT Anal Methods; 2016 Nov; 8(43):7739-7746. PubMed ID: 28496521 [TBL] [Abstract][Full Text] [Related]
12. High-Throughput 3D-Printed Model of the Feto-Maternal Interface for the Discovery and Development of Preterm Birth Therapies. Cherukuri R; Kammala AK; Thomas TJ; Saylor L; Richardson L; Kim S; Ferrer M; Acedo C; Song MJ; Gaharwar AK; Menon R; Han A ACS Appl Mater Interfaces; 2024 Aug; 16(32):41892-41906. PubMed ID: 39078878 [TBL] [Abstract][Full Text] [Related]
13. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion. Mehta V; Vilikkathala Sudhakaran S; Rath SN ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888 [TBL] [Abstract][Full Text] [Related]
14. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements. Monia Kabandana GK; Jones CG; Sharifi SK; Chen C ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857 [TBL] [Abstract][Full Text] [Related]
15. Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow. Woo SO; Oh M; Choi Y STAR Protoc; 2022 Jun; 3(2):101376. PubMed ID: 35573475 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis. Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976 [TBL] [Abstract][Full Text] [Related]
17. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Beauchamp MJ; Nordin GP; Woolley AT Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085 [TBL] [Abstract][Full Text] [Related]
18. Three-Dimensional Paper-Based Microfluidic Analytical Devices Integrated with a Plasma Separation Membrane for the Detection of Biomarkers in Whole Blood. Park C; Kim HR; Kim SK; Jeong IK; Pyun JC; Park S ACS Appl Mater Interfaces; 2019 Oct; 11(40):36428-36434. PubMed ID: 31512861 [TBL] [Abstract][Full Text] [Related]
19. Emerging 3D printing technologies and methodologies for microfluidic development. Monia Kabandana GK; Zhang T; Chen C Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586 [TBL] [Abstract][Full Text] [Related]