These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35103743)

  • 1. Hierarchical propagation of structural features in protein nanomaterials.
    Kamada A; Herneke A; Lopez-Sanchez P; Harder C; Ornithopoulou E; Wu Q; Wei X; Schwartzkopf M; Müller-Buschbaum P; Roth SV; Hedenqvist MS; Langton M; Lendel C
    Nanoscale; 2022 Feb; 14(6):2502-2510. PubMed ID: 35103743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-assisted assembly of nanostructured protein microfibers.
    Kamada A; Mittal N; Söderberg LD; Ingverud T; Ohm W; Roth SV; Lundell F; Lendel C
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1232-1237. PubMed ID: 28123065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics.
    Li T; Kambanis J; Sorenson TL; Sunde M; Shen Y
    Biomacromolecules; 2024 Jan; 25(1):5-23. PubMed ID: 38147506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation behavior and mechanical properties of amyloid protein nanowires.
    Solar M; Buehler MJ
    J Mech Behav Biomed Mater; 2013 Mar; 19():43-9. PubMed ID: 23290516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiconductive and Biocompatible Nanofibrils from the Self-Assembly of Amyloid π-Conjugated Peptides.
    Kihal N; Côté-Cyr M; Nazemi A; Bourgault S
    Biomacromolecules; 2023 Mar; 24(3):1417-1431. PubMed ID: 36847776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heparin assisted assembly of somatostatin amyloid nanofibrils results in disordered precipitates by hindrance of protofilaments interactions.
    Dharmadana D; Reynolds NP; Dekiwadia C; Conn CE; Valéry C
    Nanoscale; 2018 Oct; 10(38):18195-18204. PubMed ID: 30141801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Assembly of Cross-Linked Protein Nanofibrils into Hierarchically Structured Microfibers.
    Ye X; Capezza AJ; Davoodi S; Wei XF; Andersson RL; Chumakov A; Roth SV; Langton M; Lundell F; Hedenqvist MS; Lendel C
    ACS Nano; 2022 Aug; 16(8):12471-12479. PubMed ID: 35904348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein nanofibrils and their use as building blocks of sustainable materials.
    Lendel C; Solin N
    RSC Adv; 2021 Dec; 11(62):39188-39215. PubMed ID: 35492452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling Supramolecular Chiral Nanostructures by Self-Assembly of a Biomimetic β-Sheet-Rich Amyloidogenic Peptide.
    Sánchez-Ferrer A; Adamcik J; Handschin S; Hiew SH; Miserez A; Mezzenga R
    ACS Nano; 2018 Sep; 12(9):9152-9161. PubMed ID: 30106557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization.
    Gazit E
    Chem Soc Rev; 2007 Aug; 36(8):1263-9. PubMed ID: 17619686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of peptide hydrolysis for fibrillation kinetics and amyloid fibril morphology.
    Ye X; Hedenqvist MS; Langton M; Lendel C
    RSC Adv; 2018 Feb; 8(13):6915-6924. PubMed ID: 35540346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol induced the formation of β-sheet and amyloid-like fibrils by surfactant-like peptide A6K.
    Chen Y; Tang C; Xing Z; Zhang J; Qiu F
    J Pept Sci; 2013 Nov; 19(11):708-16. PubMed ID: 24105725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thioflavin T-Amyloid Hybrid Nanostructure for Biocatalytic Photosynthesis.
    Son G; Lee SH; Wang D; Park CB
    Small; 2018 Oct; 14(40):e1801396. PubMed ID: 30198161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unidirectional Living Growth of Self-Assembled Protein Nanofibrils Revealed by Super-resolution Microscopy.
    Beun LH; Albertazzi L; van der Zwaag D; de Vries R; Cohen Stuart MA
    ACS Nano; 2016 May; 10(5):4973-80. PubMed ID: 27124596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins.
    Knowles TP; Oppenheim TW; Buell AK; Chirgadze DY; Welland ME
    Nat Nanotechnol; 2010 Mar; 5(3):204-7. PubMed ID: 20190750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of intermolecular forces in defining material properties of protein nanofibrils.
    Knowles TP; Fitzpatrick AW; Meehan S; Mott HR; Vendruscolo M; Dobson CM; Welland ME
    Science; 2007 Dec; 318(5858):1900-3. PubMed ID: 18096801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β-Lactoglobulin nanofibrils can be assembled into nanotapes via site-specific interactions with pectin.
    Hettiarachchi CA; Melton LD; McGillivray DJ; Loveday SM; Gerrard JA; Williams MA
    Soft Matter; 2016 Jan; 12(3):756-68. PubMed ID: 26517088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of Functional Nanostructures by Short Helical Peptide Building Blocks.
    Bera S; Gazit E
    Protein Pept Lett; 2019; 26(2):88-97. PubMed ID: 30227810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.