These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35103758)

  • 1. Real-world indoor mobility with simulated prosthetic vision: The benefits and feasibility of contour-based scene simplification at different phosphene resolutions.
    de Ruyter van Steveninck J; van Gestel T; Koenders P; van der Ham G; Vereecken F; Güçlü U; van Gerven M; Güçlütürk Y; van Wezel R
    J Vis; 2022 Feb; 22(2):1. PubMed ID: 35103758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PVGAN: a generative adversarial network for object simplification in prosthetic vision.
    Elnabawy RH; Abdennadher S; Hellwich O; Eldawlatly S
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35981530
    [No Abstract]   [Full Text] [Related]  

  • 3. Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.
    Vergnieux V; Macé MJ; Jouffrais C
    Artif Organs; 2017 Sep; 41(9):852-861. PubMed ID: 28321887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses.
    van der Grinten M; de Ruyter van Steveninck J; Lozano A; Pijnacker L; Rueckauer B; Roelfsema P; van Gerven M; van Wezel R; Güçlü U; Güçlütürk Y
    Elife; 2024 Feb; 13():. PubMed ID: 38386406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze-contingent processing improves mobility, scene recognition and visual search in simulated head-steered prosthetic vision.
    de Ruyter van Steveninck J; Nipshagen M; van Gerven M; Güçlü U; Güçlüturk Y; van Wezel R
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38502957
    [No Abstract]   [Full Text] [Related]  

  • 6. Simulating the perceptual effects of electrode-retina distance in prosthetic vision.
    Avraham D; Yitzhaky Y
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35561665
    [No Abstract]   [Full Text] [Related]  

  • 7. Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.
    Macé MJ; Guivarch V; Denis G; Jouffrais C
    Artif Organs; 2015 Jul; 39(7):E102-13. PubMed ID: 25900238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semantic and structural image segmentation for prosthetic vision.
    Sanchez-Garcia M; Martinez-Cantin R; Guerrero JJ
    PLoS One; 2020; 15(1):e0227677. PubMed ID: 31995568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual wayfinding using simulated prosthetic vision in gaze-locked viewing.
    Wang L; Yang L; Dagnelie G
    Optom Vis Sci; 2008 Nov; 85(11):E1057-63. PubMed ID: 18981914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. End-to-end optimization of prosthetic vision.
    de Ruyter van Steveninck J; Güçlü U; van Wezel R; van Gerven M
    J Vis; 2022 Feb; 22(2):20. PubMed ID: 35703408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.
    Li H; Su X; Wang J; Kan H; Han T; Zeng Y; Chai X
    Artif Intell Med; 2018 Jan; 84():64-78. PubMed ID: 29129481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory augmentation to aid training with retinal prostheses.
    Kvansakul J; Hamilton L; Ayton LN; McCarthy C; Petoe MA
    J Neural Eng; 2020 Jul; 17(4):045001. PubMed ID: 32554868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assistive peripheral phosphene arrays deliver advantages in obstacle avoidance in simulated end-stage retinitis pigmentosa: a virtual-reality study.
    Zapf MP; Boon MY; Lovell NH; Suaning GJ
    J Neural Eng; 2016 Apr; 13(2):026022. PubMed ID: 26902525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rehabilitation regimes based upon psychophysical studies of prosthetic vision.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    J Neural Eng; 2009 Jun; 6(3):035009. PubMed ID: 19458400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating prosthetic vision: I. Visual models of phosphenes.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    Vision Res; 2009 Jun; 49(12):1493-506. PubMed ID: 19504749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of tactile perception based on phosphene positioning using simulated prosthetic vision.
    Chai X; Zhang L; Li W; Shao F; Yang K; Ren Q
    Artif Organs; 2008 Feb; 32(2):110-5. PubMed ID: 18269352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Phosphene Synchrony in Driving Object Binding in a Simulation of Artificial Vision.
    Meital-Kfir N; Pezaris JS
    Invest Ophthalmol Vis Sci; 2023 Dec; 64(15):5. PubMed ID: 38051263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device.
    Srivastava NR; Troyk PR; Dagnelie G
    J Neural Eng; 2009 Jun; 6(3):035008. PubMed ID: 19458397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal prosthetic vision simulation: temporal aspects.
    Avraham D; Jung JH; Yitzhaky Y; Peli E
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34359062
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.