These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35103817)

  • 1. A novel approach to calculating the kinetically derived maximum dose.
    Burgoon LD; Fuentes C; Borgert CJ
    Arch Toxicol; 2022 Mar; 96(3):809-816. PubMed ID: 35103817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetically-derived maximal dose (KMD) indicates lack of human carcinogenicity of ethylbenzene.
    Burgoon LD; Borgert CJ; Fuentes C; Klaunig JE
    Arch Toxicol; 2024 Jan; 98(1):327-334. PubMed ID: 38059960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the kinetically-derived maximum dose concept in selection of top doses for toxicity studies hampers proper hazard assessment and risk management.
    Heringa MB; Cnubben NHP; Slob W; Pronk MEJ; Muller A; Woutersen M; Hakkert BC
    Regul Toxicol Pharmacol; 2020 Jul; 114():104659. PubMed ID: 32334038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principles of dose-setting in toxicology studies: the importance of kinetics for ensuring human safety.
    Borgert CJ; Fuentes C; Burgoon LD
    Arch Toxicol; 2021 Dec; 95(12):3651-3664. PubMed ID: 34623454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opportunities and challenges related to saturation of toxicokinetic processes: Implications for risk assessment.
    Tan YM; Barton HA; Boobis A; Brunner R; Clewell H; Cope R; Dawson J; Domoradzki J; Egeghy P; Gulati P; Ingle B; Kleinstreuer N; Lowe K; Lowit A; Mendez E; Miller D; Minucci J; Nguyen J; Paini A; Perron M; Phillips K; Qian H; Ramanarayanan T; Sewell F; Villanueva P; Wambaugh J; Embry M
    Regul Toxicol Pharmacol; 2021 Dec; 127():105070. PubMed ID: 34718074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Afidopyropen: Challenges and impact of a toxicokinetic study designed to identify a point of inflection from dose-proportionality.
    Loccisano AE; Freeman E; Riffle B; Doi A; Frericks M; Fegert I; Fabian E
    Regul Toxicol Pharmacol; 2021 Aug; 124():104962. PubMed ID: 34019964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of modified Michaelis - Menten equations for determination of enzyme inducing and inhibiting drugs.
    Saganuwan SA
    BMC Pharmacol Toxicol; 2021 Oct; 22(1):57. PubMed ID: 34635182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Legitimacy of the stochastic Michaelis-Menten approximation.
    Sanft KR; Gillespie DT; Petzold LR
    IET Syst Biol; 2011 Jan; 5(1):58. PubMed ID: 21261403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Relationship Between Internal and External Dose: Some General Results Based on a Generic Compartmental Model.
    Slob W; Zeilmaker MJ; Hoogenveen RT
    Toxicol Sci; 2020 Sep; 177(1):60-70. PubMed ID: 32514576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mean residence time concepts for pharmacokinetic systems with nonlinear drug elimination described by the Michaelis-Menten equation.
    Cheng HY; Jusko WJ
    Pharm Res; 1988 Mar; 5(3):156-64. PubMed ID: 3244627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating kinetic constants in the Michaelis-Menten model from one enzymatic assay using Approximate Bayesian Computation.
    Tomczak JM; Węglarz-Tomczak E
    FEBS Lett; 2019 Oct; 593(19):2742-2750. PubMed ID: 31283008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementing a framework for integrating toxicokinetics into human health risk assessment for agrochemicals.
    Terry C; Hays S; McCoy AT; McFadden LG; Aggarwal M; Rasoulpour RJ; Juberg DR
    Regul Toxicol Pharmacol; 2016 Mar; 75():89-104. PubMed ID: 26472101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond the Michaelis-Menten: Bayesian Inference for Enzyme Kinetic Analysis.
    Hong H; Choi B; Kim JK
    Methods Mol Biol; 2022; 2385():47-64. PubMed ID: 34888715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicokinetics in the National Toxicology Program.
    Goehl TJ
    NIDA Res Monogr; 1997; 173():273-304. PubMed ID: 9260193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Michaelis-Menten kinetics determine cyclosporine steady-state concentrations: a population analysis in kidney transplant patients.
    Grevel J; Post BK; Kahan BD
    Clin Pharmacol Ther; 1993 Jun; 53(6):651-60. PubMed ID: 8513657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact.
    Fischer E; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1975; 10(3):221-7. PubMed ID: 1211106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic framework for the estimation of the adult and child toxicokinetic intraspecies uncertainty factors.
    Pelekis M; Nicolich MJ; Gauthier JS
    Risk Anal; 2003 Dec; 23(6):1239-55. PubMed ID: 14641898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter estimation using a direct solution of the integrated Michaelis-Menten equation.
    Goudar CT; Sonnad JR; Duggleby RG
    Biochim Biophys Acta; 1999 Jan; 1429(2):377-83. PubMed ID: 9989222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacodynamic models: parameterizing the hill equation, Michaelis-Menten, the logistic curve, and relationships among these models.
    Reeve R; Turner JR
    J Biopharm Stat; 2013 May; 23(3):648-61. PubMed ID: 23611201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.