BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35103846)

  • 1. Variable levels of spike and ORF1ab RNA in post-mortem lung samples of SARS-CoV-2-positive subjects: comparison between ISH and RT-PCR.
    Zito Marino F; De Cristofaro T; Varriale M; Zannini G; Ronchi A; La Mantia E; Campobasso CP; De Micco F; Mascolo P; Municinò M; Municinò E; Vestini F; Pinto O; Moccia M; De Stefano N; Nappi O; Sementa C; Zotti G; Pianese L; Giordano C; Franco R
    Virchows Arch; 2022 Mar; 480(3):597-607. PubMed ID: 35103846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of RNA In Situ Hybridization and Immunohistochemistry Techniques for the Detection and Localization of SARS-CoV-2 in Human Tissues.
    Massoth LR; Desai N; Szabolcs A; Harris CK; Neyaz A; Crotty R; Chebib I; Rivera MN; Sholl LM; Stone JR; Ting DT; Deshpande V
    Am J Surg Pathol; 2021 Jan; 45(1):14-24. PubMed ID: 32826529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of In Situ Hybridization, Immunohistochemistry, and Reverse Transcription-Droplet Digital Polymerase Chain Reaction for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Testing in Tissue.
    Roden AC; Vrana JA; Koepplin JW; Hudson AE; Norgan AP; Jenkinson G; Yamaoka S; Ebihara H; Monroe R; Szabolcs MJ; Majumdar R; Moyer AM; García JJ; Kipp BR
    Arch Pathol Lab Med; 2021 Jul; 145(7):785-796. PubMed ID: 33720333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of SARS-CoV-2 in tissue: the comparative roles of RT-qPCR, in situ RNA hybridization, and immunohistochemistry.
    McHenry A; Iyer K; Wang J; Liu C; Harigopal M
    Expert Rev Mol Diagn; 2022 May; 22(5):559-574. PubMed ID: 35658709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of False Negative Results in RT-PCR Detection of SARS-CoV-2 RNAs in Clinical Specimens by Using an Internal Reference.
    Zhang Y; Wang C; Han M; Ye J; Gao Y; Liu Z; He T; Li T; Xu M; Zhou L; Zou G; Lu M; Zhang Z
    Virol Sin; 2020 Dec; 35(6):758-767. PubMed ID: 32749593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liver alterations and detection of SARS-CoV-2 RNA and proteins in COVID-19 autopsies.
    Pesti A; Danics K; Glasz T; Várkonyi T; Barbai T; Reszegi A; Kovalszky I; Vályi-Nagy I; Dobi D; Lotz G; Schaff Z; Kiss A
    Geroscience; 2023 Apr; 45(2):1015-1031. PubMed ID: 36527584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Genome Sequencing from Post-Mortem Formalin-Fixed, Paraffin-Embedded Lung Tissues.
    Van Campenhout C; De Mendonça R; Alexiou B; De Clercq S; Racu ML; Royer-Chardon C; Rusu S; Van Eycken M; Artesi M; Durkin K; Mardulyn P; Bours V; Decaestecker C; Remmelink M; Salmon I; D'Haene N
    J Mol Diagn; 2021 Sep; 23(9):1065-1077. PubMed ID: 34153515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of Severe Acute Respiratory Syndrome Coronavirus 2 Replication and Tropism in the Lungs, Airways, and Vascular Endothelium of Patients With Fatal Coronavirus Disease 2019: An Autopsy Case Series.
    Bhatnagar J; Gary J; Reagan-Steiner S; Estetter LB; Tong S; Tao Y; Denison AM; Lee E; DeLeon-Carnes M; Li Y; Uehara A; Paden CR; Leitgeb B; Uyeki TM; Martines RB; Ritter JM; Paddock CD; Shieh WJ; Zaki SR
    J Infect Dis; 2021 Mar; 223(5):752-764. PubMed ID: 33502471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Newcastle disease virus RNA by reverse transcription-polymerase chain reaction using formalin-fixed, paraffin-embedded tissue and comparison with immunohistochemistry and in situ hybridization.
    Wakamatsu N; King DJ; Seal BS; Brown CC
    J Vet Diagn Invest; 2007 Jul; 19(4):396-400. PubMed ID: 17609350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic Accuracy of SARS-CoV-2 Nucleocapsid Antigen Self-Test in Comparison to Reverse Transcriptase-Polymerase Chain Reaction.
    Sukumaran A; Suvekbala V; R AK; Thomas RE; Raj A; Thomas T; Abhijith BL; Jose J; Paul JK; Vasudevan DM
    J Appl Lab Med; 2022 Jun; 7(4):871-880. PubMed ID: 35689333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of nsp1 gene as the target of SARS-CoV-2 real-time RT-PCR using nanopore whole-genome sequencing.
    Chan WM; Ip JD; Chu AW; Yip CC; Lo LS; Chan KH; Ng AC; Poon RW; To WK; Tsang OT; Leung WS; Kwan MY; Chua GT; Chung TW; Hung IF; Kok KH; Cheng VC; Chan JF; Yuen KY; To KK
    J Med Virol; 2020 Nov; 92(11):2725-2734. PubMed ID: 32501535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing of rapid assay for the detection of RdRp/Orf1ab specific to SARS-CoV-2.
    Derin DÇ; Gültekin E; Taşkın Iİ; Otlu B; Öktem HA
    J Virol Methods; 2023 Oct; 320():114774. PubMed ID: 37460042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Dual-Gene Diagnosis of SARS-CoV-2 Based on CRISPR/Cas9-Mediated Lateral Flow Assay.
    Xiong E; Jiang L; Tian T; Hu M; Yue H; Huang M; Lin W; Jiang Y; Zhu D; Zhou X
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5307-5315. PubMed ID: 33295064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Approach to the Bioluminescent Detection of the SARS-CoV-2 ORF1ab Gene by Coupling Isothermal RNA Reverse Transcription Amplification with a Digital PCR Approach.
    Fei Z; Wei R; Cheng C; Xiao P
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and comparison of novel multiple cross displacement amplification (MCDA) assays with other nucleic acid amplification methods for SARS-CoV-2 detection.
    Luu LDW; Payne M; Zhang X; Luo L; Lan R
    Sci Rep; 2021 Jan; 11(1):1873. PubMed ID: 33479389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of hepatitis C virus RNA in formalin-fixed paraffin-embedded sections with digoxigenin-labeled cRNA probes.
    Qian X; Guerrero RB; Plummer TB; Alves VF; Lloyd RV
    Diagn Mol Pathol; 2004 Mar; 13(1):9-14. PubMed ID: 15163003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic sensitivity and specificity of in situ hybridization and immunohistochemistry for Eastern equine encephalitis virus and West Nile virus in formalin-fixed, paraffin-embedded brain tissue of horses.
    Pennick KE; McKnight CA; Patterson JS; Latimer KS; Maes RK; Wise AG; Kiupel M
    J Vet Diagn Invest; 2012 Mar; 24(2):333-8. PubMed ID: 22379048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of SARS-CoV-2 and the L452R spike mutation using reverse transcription loop-mediated isothermal amplification plus bioluminescent assay in real-time (RT-LAMP-BART).
    Iijima T; Ando S; Kanamori D; Kuroda K; Nomura T; Tisi L; Kilgore PE; Percy N; Kohase H; Hayakawa S; Seki M; Hoshino T
    PLoS One; 2022; 17(3):e0265748. PubMed ID: 35312732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive and amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor powered by CRISPR/Cas13a.
    Kashefi-Kheyrabadi L; Nguyen HV; Go A; Lee MH
    Bioelectrochemistry; 2023 Apr; 150():108364. PubMed ID: 36621051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of a laboratory-developed test targeting the envelope gene with three nucleic acid amplification tests for detection of SARS-CoV-2.
    Bulterys PL; Garamani N; Stevens B; Sahoo MK; Huang C; Hogan CA; Zehnder J; Pinsky BA
    J Clin Virol; 2020 Aug; 129():104427. PubMed ID: 32535398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.