These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35103852)

  • 21. Genetically encoded probes for NAD
    Bilan DS; Belousov VV
    Free Radic Biol Med; 2016 Nov; 100():32-42. PubMed ID: 27387770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. cAMP Biosensors Based on Genetically Encoded Fluorescent/Luminescent Proteins.
    Kim N; Shin S; Bae SW
    Biosensors (Basel); 2021 Jan; 11(2):. PubMed ID: 33572585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox biosensors in a context of multiparameter imaging.
    Kostyuk AI; Panova AS; Bilan DS; Belousov VV
    Free Radic Biol Med; 2018 Nov; 128():23-39. PubMed ID: 29630928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.
    Zhao Y; Wang A; Zou Y; Su N; Loscalzo J; Yang Y
    Nat Protoc; 2016 Aug; 11(8):1345-59. PubMed ID: 27362337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene.
    Takahashi H; Takahara K; Hashida SN; Hirabayashi T; Fujimori T; Kawai-Yamada M; Yamaya T; Yanagisawa S; Uchimiya H
    Plant Physiol; 2009 Sep; 151(1):100-13. PubMed ID: 19587098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetically Encoded Fluorescent Biosensors for Biomedical Applications.
    Ovechkina VS; Zakian SM; Medvedev SP; Valetdinova KR
    Biomedicines; 2021 Oct; 9(11):. PubMed ID: 34829757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imaging Mitochondrial Functions: from Fluorescent Dyes to Genetically-Encoded Sensors.
    Gökerküçük EB; Tramier M; Bertolin G
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 31979408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deuterium Tracing to Interrogate Compartment-Specific NAD(P)H Metabolism in Cultured Mammalian Cells.
    Lim EW; Parker SJ; Metallo CM
    Methods Mol Biol; 2020; 2088():51-71. PubMed ID: 31893370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetically encoded fluorescence lifetime biosensors: overview, advances, and opportunities.
    Mo Y; Zhou H; Xu J; Chen X; Li L; Zhang S
    Analyst; 2023 Oct; 148(20):4939-4953. PubMed ID: 37721109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during Arabidopsis rosette development.
    Queval G; Noctor G
    Anal Biochem; 2007 Apr; 363(1):58-69. PubMed ID: 17288982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using Genetically Encoded Fluorescent Biosensors for Quantitative In Vivo Imaging.
    Yoshinari A; Moe-Lange J; Kleist TJ; Cartwright HN; Quint DA; Ehrhardt DW; Frommer WB; Nakamura M
    Methods Mol Biol; 2021; 2200():303-322. PubMed ID: 33175384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering an NADPH/NADP
    Zhang J; Sonnenschein N; Pihl TP; Pedersen KR; Jensen MK; Keasling JD
    ACS Synth Biol; 2016 Dec; 5(12):1546-1556. PubMed ID: 27419466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable isotope labeling by essential nutrients in cell culture (SILEC) for accurate measurement of nicotinamide adenine dinucleotide metabolism.
    Frederick DW; Trefely S; Buas A; Goodspeed J; Singh J; Mesaros C; Baur JA; Snyder NW
    Analyst; 2017 Nov; 142(23):4431-4437. PubMed ID: 29072717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dicyanoisophorone-Based Near-Infrared-Emission Fluorescent Probe for Detecting NAD(P)H in Living Cells and in Vivo.
    Zhao Y; Wei K; Kong F; Gao X; Xu K; Tang B
    Anal Chem; 2019 Jan; 91(2):1368-1374. PubMed ID: 30525465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.
    Liu J; Li H; Zhao G; Caiyin Q; Qiao J
    J Ind Microbiol Biotechnol; 2018 May; 45(5):313-327. PubMed ID: 29582241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In planta imaging of pyridine nucleotides using second-generation fluorescent protein biosensors.
    Lim SL; Liu J; Dupouy G; Singh G; Baudrey S; Yang L; Zhong JY; Chabouté ME; Lim BL
    Plant J; 2024 May; ():. PubMed ID: 38761168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using Fractional Intensities of Time-resolved Fluorescence to Sensitively Quantify NADH/NAD
    Chang M; Li L; Hu H; Hu Q; Wang A; Cao X; Yu X; Zhang S; Zhao Y; Chen J; Yang Y; Xu J
    Sci Rep; 2017 Jun; 7(1):4209. PubMed ID: 28646144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of the Metabolic Heterogeneity in Mycobacterial Cells Through the Measurement of the NADH/NAD+ Ratio Using a Genetically Encoded Sensor.
    Bhat SA; Iqbal IK; Kumar A
    Methods Mol Biol; 2018; 1745():261-275. PubMed ID: 29476473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A genetically encoded tool for manipulation of NADP
    Cracan V; Titov DV; Shen H; Grabarek Z; Mootha VK
    Nat Chem Biol; 2017 Oct; 13(10):1088-1095. PubMed ID: 28805804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.