These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35103921)

  • 21. Proof of Concept Study: Investigating Force Metrics of an Intracorporeal Suturing Knot Task.
    Wee J; Azzie G; Drake J; Gerstle JT
    J Laparoendosc Adv Surg Tech A; 2018 Jul; 28(7):899-905. PubMed ID: 29920136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of validity evidence for the RobotiX robot assisted surgery simulator on advanced suturing tasks.
    Leijte E; de Blaauw I; Rosman C; Botden SMBI
    BMC Surg; 2020 Aug; 20(1):183. PubMed ID: 32787831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AIxSuture: vision-based assessment of open suturing skills.
    Hoffmann H; Funke I; Peters P; Venkatesh DK; Egger J; Rivoir D; Röhrig R; Hölzle F; Bodenstedt S; Willemer MC; Speidel S; Puladi B
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1045-1052. PubMed ID: 38526613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of a Novel Inverted Peg Transfer Task: Advancing Beyond the Regular Peg Transfer Task for Surgical Simulation-Based Assessment.
    Abdelrahman AM; Yu D; Lowndes BR; Buckarma EH; Gas BL; Farley DR; Bingener J; Hallbeck MS
    J Surg Educ; 2018; 75(3):836-843. PubMed ID: 29037821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Skills in minimally invasive and open surgery show limited transferability to robotic surgery: results from a prospective study.
    Kowalewski KF; Schmidt MW; Proctor T; Pohl M; Wennberg E; Karadza E; Romero P; Kenngott HG; Müller-Stich BP; Nickel F
    Surg Endosc; 2018 Apr; 32(4):1656-1667. PubMed ID: 29435749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic performance evaluation of the intracorporeal suture exercise.
    Halperin L; Sroka G; Zuckerman I; Laufer S
    Int J Comput Assist Radiol Surg; 2024 Jan; 19(1):83-86. PubMed ID: 37278834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does the incorporation of motion metrics into the existing FLS metrics lead to improved skill acquisition on simulators? A single blinded, randomized controlled trial.
    Stefanidis D; Yonce TC; Korndorffer JR; Phillips R; Coker A
    Ann Surg; 2013 Jul; 258(1):46-52. PubMed ID: 23470570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracorporal knot tying techniques - which is the right one?
    Romero P; Nickel F; Mantel M; Frongia G; Rossler A; Kowalewski KF; Müller-Stich BP; Günther P
    J Pediatr Surg; 2017 Apr; 52(4):633-638. PubMed ID: 28017412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Augmented reality self-training system for suturing in open surgery: A randomized controlled trial.
    Nagayo Y; Saito T; Oyama H
    Int J Surg; 2022 Jun; 102():106650. PubMed ID: 35525415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-efficient laparoscopic skills assessment using an augmented-reality simulator.
    Oostema JA; Abdel MP; Gould JC
    Surg Endosc; 2008 Dec; 22(12):2621-4. PubMed ID: 18347859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Task-Level vs. Segment-Level Quantitative Metrics for Surgical Skill Assessment.
    Vedula SS; Malpani A; Ahmidi N; Khudanpur S; Hager G; Chen CC
    J Surg Educ; 2016; 73(3):482-9. PubMed ID: 26896147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Video self-assessment augments development of videoscopic suturing skill.
    Jamshidi R; LaMasters T; Eisenberg D; Duh QY; Curet M
    J Am Coll Surg; 2009 Nov; 209(5):622-5. PubMed ID: 19854403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracorporal suturing--driving license necessary?
    Romero P; Brands O; Nickel F; Müller B; Günther P; Holland-Cunz S
    J Pediatr Surg; 2014 Jul; 49(7):1138-41. PubMed ID: 24952803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Objective and Automated Quantification of Instrument Handling for Open Surgical Suturing Skill Assessment: A Simulation-Based Study.
    Singh SP; Shayan AM; Gao J; Bible J; Groff RE; Singapogu R
    IEEE Open J Eng Med Biol; 2024; 5():485-493. PubMed ID: 39050974
    [No Abstract]   [Full Text] [Related]  

  • 35. Automatically rating trainee skill at a pediatric laparoscopic suturing task.
    Oquendo YA; Riddle EW; Hiller D; Blinman TA; Kuchenbecker KJ
    Surg Endosc; 2018 Apr; 32(4):1840-1857. PubMed ID: 29071419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of a virtual intracorporeal suturing simulator.
    Fu Y; Cavuoto L; Qi D; Panneerselvam K; Yang G; Artikala VS; Enquobahrie A; De S; Schwaitzberg SD
    Surg Endosc; 2019 Aug; 33(8):2468-2472. PubMed ID: 30334151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Adult and Pediatric Surgeons: Insight into Simulation-Based Tools That May Improve Expertise Among Experts.
    Trudeau MO; Carrillo B; Nasr A; Gerstle JT; Azzie G
    J Laparoendosc Adv Surg Tech A; 2018 May; 28(5):599-605. PubMed ID: 29412753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motion analysis of the JHU-ISI Gesture and Skill Assessment Working Set using Robotics Video and Motion Assessment Software.
    Lefor AK; Harada K; Dosis A; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2017-2025. PubMed ID: 33025366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redefining simulator proficiency using automaticity theory.
    Stefanidis D; Scerbo MW; Korndorffer JR; Scott DJ
    Am J Surg; 2007 Apr; 193(4):502-6. PubMed ID: 17368299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surgical skill levels: Classification and analysis using deep neural network model and motion signals.
    Nguyen XA; Ljuhar D; Pacilli M; Nataraja RM; Chauhan S
    Comput Methods Programs Biomed; 2019 Aug; 177():1-8. PubMed ID: 31319938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.