These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35104375)

  • 1. Rewritable Macromolecular Data Storage with Automated Read-out.
    Soete M; De Bruycker K; Du Prez F
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202116718. PubMed ID: 35104375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequencing of Uniform Multifunctional Oligoesters via Random Chain Cleavages.
    Soete M; Du Prez FE
    Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202202819. PubMed ID: 35332968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reading Information Stored in Synthetic Macromolecules.
    Soete M; Mertens C; Badi N; Du Prez FE
    J Am Chem Soc; 2022 Dec; 144(49):22378-22390. PubMed ID: 36454647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-Encoded Macromolecules with Increased Data Storage Capacity through a Thiol-Epoxy Reaction.
    Soete M; Mertens C; Aksakal R; Badi N; Du Prez F
    ACS Macro Lett; 2021 May; 10(5):616-622. PubMed ID: 35570768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Rewritable, Random-Access DNA-Based Storage System.
    Yazdi SM; Yuan Y; Ma J; Zhao H; Milenkovic O
    Sci Rep; 2015 Sep; 5():14138. PubMed ID: 26382652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reading mixtures of uniform sequence-defined macromolecules to increase data storage capacity.
    Frölich M; Hofheinz D; Meier MAR
    Commun Chem; 2020 Dec; 3(1):184. PubMed ID: 36703345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the structure of sequence-defined poly(phosphodiester)s for optimal MS/MS reading of digital information.
    Amalian JA; Al Ouahabi A; Cavallo G; König NF; Poyer S; Lutz JF; Charles L
    J Mass Spectrom; 2017 Nov; 52(11):788-798. PubMed ID: 28482377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular data storage with zero synthetic effort and simple read-out.
    Bohn P; Weisel MP; Wolfs J; Meier MAR
    Sci Rep; 2022 Aug; 12(1):13878. PubMed ID: 35974033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MS/MS-Assisted Design of Sequence-Controlled Synthetic Polymers for Improved Reading of Encoded Information.
    Charles L; Cavallo G; Monnier V; Oswald L; Szweda R; Lutz JF
    J Am Soc Mass Spectrom; 2017 Jun; 28(6):1149-1159. PubMed ID: 27914016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cleavable Binary Dyads: Simplifying Data Extraction and Increasing Storage Density in Digital Polymers.
    Cavallo G; Poyer S; Amalian JA; Dufour F; Burel A; Carapito C; Charles L; Lutz JF
    Angew Chem Int Ed Engl; 2018 May; 57(21):6266-6269. PubMed ID: 29633445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual sequence definition increases the data storage capacity of sequence-defined macromolecules.
    Wetzel KS; Frölich M; Solleder SC; Nickisch R; Treu P; Meier MAR
    Commun Chem; 2020 May; 3(1):63. PubMed ID: 36703457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rewritable two-dimensional DNA-based data storage with machine learning reconstruction.
    Pan C; Tabatabaei SK; Tabatabaei Yazdi SMH; Hernandez AG; Schroeder CM; Milenkovic O
    Nat Commun; 2022 May; 13(1):2984. PubMed ID: 35624096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Sequence-Defined Macromolecules to Macromolecular Pin Codes.
    Holloway JO; Van Lijsebetten F; Badi N; Houck HA; Du Prez FE
    Adv Sci (Weinh); 2020 Apr; 7(8):1903698. PubMed ID: 32328435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic Quaternary-Encoded Oligourethanes for Data Encryption.
    Shi Q; Zhou X; Xu J; Zhang J; Wang N; Zhang G; Hu J; Liu S
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202214695. PubMed ID: 36412223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly parallel strategy for storage of digital information in living cells.
    Akhmetov A; Ellington AD; Marcotte EM
    BMC Biotechnol; 2018 Oct; 18(1):64. PubMed ID: 30333005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A data-mining scheme for identifying peptide structural motifs responsible for different MS/MS fragmentation intensity patterns.
    Huang Y; Tseng GC; Yuan S; Pasa-Tolic L; Lipton MS; Smith RD; Wysocki VH
    J Proteome Res; 2008 Jan; 7(1):70-9. PubMed ID: 18052120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated algorithm for sequence confirmation of chemically modified oligonucleotides by tandem mass spectrometry.
    Kretschmer M; Lavine G; McArdle J; Kuchimanchi S; Murugaiah V; Manoharan M
    Anal Biochem; 2010 Oct; 405(2):213-23. PubMed ID: 20599656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional sequence-defined macromolecules for chemical data storage.
    Martens S; Landuyt A; Espeel P; Devreese B; Dawyndt P; Du Prez F
    Nat Commun; 2018 Oct; 9(1):4451. PubMed ID: 30367037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-based feature matching improves protein identification via LC-MS and tandem MS.
    Noy K; Towfic F; Wittenberg GM; Fasulo D
    J Comput Biol; 2011 Apr; 18(4):547-57. PubMed ID: 21417940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for bioanalysis of an oligonucleotide class macromolecule from rat plasma using liquid chromatography-tandem mass spectrometry.
    Zhang G; Lin J; Srinivasan K; Kavetskaia O; Duncan JN
    Anal Chem; 2007 May; 79(9):3416-24. PubMed ID: 17394287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.