These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 35104431)
1. Brillouin-Raman microspectroscopy for the morpho-mechanical imaging of human lamellar bone. Alunni Cardinali M; Di Michele A; Mattarelli M; Caponi S; Govoni M; Dallari D; Brogini S; Masia F; Borri P; Langbein W; Palombo F; Morresi A; Fioretto D J R Soc Interface; 2022 Feb; 19(187):20210642. PubMed ID: 35104431 [TBL] [Abstract][Full Text] [Related]
2. Mechano-chemistry of human femoral diaphysis revealed by correlative Brillouin-Raman microspectroscopy. Cardinali MA; Govoni M; Dallari D; Caponi S; Fioretto D; Morresi A Sci Rep; 2020 Oct; 10(1):17341. PubMed ID: 33060731 [TBL] [Abstract][Full Text] [Related]
3. Assessment of composition and anisotropic elastic properties of secondary osteon lamellae. Hofmann T; Heyroth F; Meinhard H; Fränzel W; Raum K J Biomech; 2006; 39(12):2282-94. PubMed ID: 16144702 [TBL] [Abstract][Full Text] [Related]
4. Characterization of rat vertebrae cortical bone microstructures using confocal Raman microscopy combined to tomography and electron microscopy. Shah SA; Salehi H; Cavaillès V; Fernandez F; Cuisinier F; Collart-Dutilleul PY; Desoutter A Ann Anat; 2023 Oct; 250():152162. PubMed ID: 37774934 [TBL] [Abstract][Full Text] [Related]
5. Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties. Schrof S; Varga P; Hesse B; Schöne M; Schütz R; Masic A; Raum K Acta Biomater; 2016 Oct; 44():51-64. PubMed ID: 27497843 [TBL] [Abstract][Full Text] [Related]
6. Orientation and size-dependent mechanical modulation within individual secondary osteons in cortical bone tissue. Carnelli D; Vena P; Dao M; Ortiz C; Contro R J R Soc Interface; 2013 Apr; 10(81):20120953. PubMed ID: 23389895 [TBL] [Abstract][Full Text] [Related]
8. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae. Schrof S; Varga P; Galvis L; Raum K; Masic A J Struct Biol; 2014 Sep; 187(3):266-275. PubMed ID: 25025981 [TBL] [Abstract][Full Text] [Related]
9. Brillouin and Raman Micro-Spectroscopy: A Tool for Micro-Mechanical and Structural Characterization of Cortical and Trabecular Bone Tissues. Alunni Cardinali M; Morresi A; Fioretto D; Vivarelli L; Dallari D; Govoni M Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832271 [TBL] [Abstract][Full Text] [Related]
10. New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone. Falgayrac G; Facq S; Leroy G; Cortet B; Penel G Appl Spectrosc; 2010 Jul; 64(7):775-80. PubMed ID: 20615291 [TBL] [Abstract][Full Text] [Related]
11. Mapping dynamical mechanical properties of osteonal bone by scanning acoustic microscopy in time-of-flight mode. Blouin S; Puchegger S; Roschger A; Berzlanovich A; Fratzl P; Klaushofer K; Roschger P Microsc Microanal; 2014 Jun; 20(3):924-36. PubMed ID: 24725753 [TBL] [Abstract][Full Text] [Related]
12. Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy. Meng Z; Bustamante Lopez SC; Meissner KE; Yakovlev VV J Biophotonics; 2016 Mar; 9(3):201-7. PubMed ID: 26929086 [TBL] [Abstract][Full Text] [Related]
13. Bone osteonal tissues by Raman spectral mapping: orientation-composition. Kazanci M; Roschger P; Paschalis EP; Klaushofer K; Fratzl P J Struct Biol; 2006 Dec; 156(3):489-96. PubMed ID: 16931054 [TBL] [Abstract][Full Text] [Related]
14. Microstructure and nanomechanical properties in osteons relate to tissue and animal age. Burket J; Gourion-Arsiquaud S; Havill LM; Baker SP; Boskey AL; van der Meulen MC J Biomech; 2011 Jan; 44(2):277-84. PubMed ID: 21074774 [TBL] [Abstract][Full Text] [Related]
15. Variations in the individual thick lamellar properties within osteons by nanoindentation. Rho JY; Zioupos P; Currey JD; Pharr GM Bone; 1999 Sep; 25(3):295-300. PubMed ID: 10495133 [TBL] [Abstract][Full Text] [Related]
16. Combining polarized Raman spectroscopy and micropillar compression to study microscale structure-property relationships in mineralized tissues. Kochetkova T; Peruzzi C; Braun O; Overbeck J; Maurya AK; Neels A; Calame M; Michler J; Zysset P; Schwiedrzik J Acta Biomater; 2021 Jan; 119():390-404. PubMed ID: 33122147 [TBL] [Abstract][Full Text] [Related]
17. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones. Dal Sasso G; Angelini I; Maritan L; Artioli G Talanta; 2018 Mar; 179():167-176. PubMed ID: 29310218 [TBL] [Abstract][Full Text] [Related]
18. Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation. Franzoso G; Zysset PK J Biomech Eng; 2009 Feb; 131(2):021001. PubMed ID: 19102560 [TBL] [Abstract][Full Text] [Related]
19. Ultrastructural changes accompanying the mechanical deformation of bone tissue: a Raman imaging study. Carden A; Rajachar RM; Morris MD; Kohn DH Calcif Tissue Int; 2003 Feb; 72(2):166-75. PubMed ID: 12469250 [TBL] [Abstract][Full Text] [Related]
20. Osteon: Structure, Turnover, and Regeneration. Chang B; Liu X Tissue Eng Part B Rev; 2022 Apr; 28(2):261-278. PubMed ID: 33487116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]