These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35104440)

  • 1. Bimodal modulation of short-term motor memory via dynamic sodium pumps in a vertebrate spinal cord.
    Hachoumi L; Rensner R; Richmond C; Picton L; Zhang H; Sillar KT
    Curr Biol; 2022 Mar; 32(5):1038-1048.e2. PubMed ID: 35104440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function.
    Zhang HY; Sillar KT
    Curr Biol; 2012 Mar; 22(6):526-31. PubMed ID: 22405867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks.
    Picton LD; Nascimento F; Broadhead MJ; Sillar KT; Miles GB
    J Neurosci; 2017 Jan; 37(4):906-921. PubMed ID: 28123025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium pump regulation of locomotor control circuits.
    Picton LD; Zhang H; Sillar KT
    J Neurophysiol; 2017 Aug; 118(2):1070-1081. PubMed ID: 28539392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms underlying the activity-dependent regulation of locomotor network performance by the Na+ pump.
    Zhang HY; Picton L; Li WC; Sillar KT
    Sci Rep; 2015 Nov; 5():16188. PubMed ID: 26541477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Xenopus Tadpole Locomotion via Selective Expression of Ih in Excitatory Interneurons.
    Picton LD; Sillar KT; Zhang HY
    Curr Biol; 2018 Dec; 28(24):3911-3923.e2. PubMed ID: 30503615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles.
    Currie SP; Sillar KT
    J Neurophysiol; 2018 Mar; 119(3):786-795. PubMed ID: 29142093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metamodulation of a spinal locomotor network by nitric oxide.
    McLean DL; Sillar KT
    J Neurosci; 2004 Oct; 24(43):9561-71. PubMed ID: 15509743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposing aminergic modulation of distinct spinal locomotor circuits and their functional coupling during amphibian metamorphosis.
    Rauscent A; Einum J; Le Ray D; Simmers J; Combes D
    J Neurosci; 2009 Jan; 29(4):1163-74. PubMed ID: 19176825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide-mediated modulation of the murine locomotor network.
    Foster JD; Dunford C; Sillar KT; Miles GB
    J Neurophysiol; 2014 Feb; 111(3):659-74. PubMed ID: 24259545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor control: learning new moves with old pumps.
    Simmers J
    Curr Biol; 2012 Mar; 22(6):R194-6. PubMed ID: 22440804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A switch in aminergic modulation of locomotor CPG output during amphibian metamorphosis.
    Combes D; Sillar KT; Simmers J
    Front Biosci (Schol Ed); 2012 Jun; 4(4):1364-74. PubMed ID: 22652878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and neuromodulation of spinal locomotor networks in the metamorphosing frog.
    Rauscent A; Le Ray D; Cabirol-Pol MJ; Sillar KT; Simmers J; Combes D
    J Physiol Paris; 2006; 100(5-6):317-27. PubMed ID: 17629683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental stage-dependent switching in the neuromodulation of vertebrate locomotor central pattern generator networks.
    Hachoumi L; Sillar KT
    Dev Neurobiol; 2020 Jan; 80(1-2):42-57. PubMed ID: 31705739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions.
    Vedovato N; Gadsby DC
    J Gen Physiol; 2010 Jul; 136(1):63-82. PubMed ID: 20548052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serotonergic modulation of post-synaptic inhibition and locomotor alternating pattern in the spinal cord.
    Gackière F; Vinay L
    Front Neural Circuits; 2014; 8():102. PubMed ID: 25221477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors.
    Liu J; Jordan LM
    J Neurophysiol; 2005 Aug; 94(2):1392-404. PubMed ID: 15872068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimentally derived model for the locomotor pattern generator in the Xenopus embryo.
    Dale N
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):489-510. PubMed ID: 8847642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor-activated neurons of the cat. I. Serotonergic innervation and co-localization of 5-HT7, 5-HT2A, and 5-HT1A receptors in the thoraco-lumbar spinal cord.
    Noga BR; Johnson DM; Riesgo MI; Pinzon A
    J Neurophysiol; 2009 Sep; 102(3):1560-76. PubMed ID: 19571190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular K+ induces locomotor-like patterns in the rat spinal cord in vitro: comparison with NMDA or 5-HT induced activity.
    Bracci E; Beato M; Nistri A
    J Neurophysiol; 1998 May; 79(5):2643-52. PubMed ID: 9582235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.