These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35104509)

  • 1. The utilization of alkaline wastes in passive carbon capture and sequestration: Promises, challenges and environmental aspects.
    Khudhur FWK; MacDonald JM; Macente A; Daly L
    Sci Total Environ; 2022 Jun; 823():153553. PubMed ID: 35104509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of steelmaking slag for carbon capture and storage with flue gas.
    RushendraRevathy TD; Ramachandran A; Palanivelu K
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51065-51082. PubMed ID: 34786621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on ex situ mineral carbonation.
    Yadav S; Mehra A
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12202-12231. PubMed ID: 33405167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature.
    Rushendra Revathy TD; Palanivelu K; Ramachandran A
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7349-59. PubMed ID: 26681331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral carbonation of sedimentary mine waste for carbon sequestration and potential reutilization as cementitious material.
    Kusin FM; Hasan SNMS; Hassim MA; Molahid VLM
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12767-12780. PubMed ID: 32008190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the potential of steel slag waste for carbon sequestration through mineral carbonation: A comparative study of blast-furnace slag and ladle slag.
    Elyasi Gomari K; Rezaei Gomari S; Hughes D; Ahmed T
    J Environ Manage; 2024 Feb; 351():119835. PubMed ID: 38141347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineralogical and chemical characterization of mining waste and utilization for carbon sequestration through mineral carbonation.
    Molahid VLM; Kusin FM; Syed Hasan SNM
    Environ Geochem Health; 2023 Jul; 45(7):4439-4460. PubMed ID: 36811700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicate production and availability for mineral carbonation.
    Renforth P; Washbourne CL; Taylder J; Manning DA
    Environ Sci Technol; 2011 Mar; 45(6):2035-41. PubMed ID: 21332128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of major by-products from non-ferrous metal industries for CO
    Abdul F; Iizuka A; Ho HJ; Adachi K; Shibata E
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):78041-78074. PubMed ID: 37308624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converting industrial waste into a value-added cement material through ambient pressure carbonation.
    Xian X; Mahoutian M; Zhang S; Shao Y; Zhang D; Liu J
    J Environ Manage; 2023 Jan; 325(Pt B):116603. PubMed ID: 36323120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide sequestration of iron ore mining waste under low-reaction condition of a direct mineral carbonation process.
    Kusin FM; Hasan SNMS; Molahid VLM; Yusuff FM; Jusop S
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22188-22210. PubMed ID: 36282383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated carbonation of brucite in mine tailings for carbon sequestration.
    Harrison AL; Power IM; Dipple GM
    Environ Sci Technol; 2013 Jan; 47(1):126-34. PubMed ID: 22770473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.
    Tian S; Jiang J; Chen X; Yan F; Li K
    ChemSusChem; 2013 Dec; 6(12):2348-55. PubMed ID: 23913597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon dioxide sequestration in cement kiln dust through mineral carbonation.
    Huntzinger DN; Gierke JS; Kawatra SK; Eisele TC; Sutter LL
    Environ Sci Technol; 2009 Mar; 43(6):1986-92. PubMed ID: 19368202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects.
    Polettini A; Pomi R; Stramazzo A
    J Environ Manage; 2016 Feb; 167():185-95. PubMed ID: 26686071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed.
    Pan SY; Chiang PC; Chen YH; Tan CS; Chang EE
    Environ Sci Technol; 2013 Apr; 47(7):3308-15. PubMed ID: 23458276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous mineral carbonation of ultramafic material: a pre-requisite to integrate into mineral extraction and tailings management operation.
    Puthiya Veetil SK; Hitch M
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29096-29109. PubMed ID: 33550555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr concerns.
    Su TH; Yang HJ; Shau YH; Takazawa E; Lee YC
    J Environ Sci (China); 2016 Mar; 41():99-111. PubMed ID: 26969055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric Carbon Capture Performance of Legacy Iron and Steel Waste.
    Pullin H; Bray AW; Burke IT; Muir DD; Sapsford DJ; Mayes WM; Renforth P
    Environ Sci Technol; 2019 Aug; 53(16):9502-9511. PubMed ID: 31317734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.
    Kirchofer A; Becker A; Brandt A; Wilcox J
    Environ Sci Technol; 2013 Jul; 47(13):7548-54. PubMed ID: 23738892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.