BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 35104528)

  • 1. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review.
    Baskar AV; Bolan N; Hoang SA; Sooriyakumar P; Kumar M; Singh L; Jasemizad T; Padhye LP; Singh G; Vinu A; Sarkar B; Kirkham MB; Rinklebe J; Wang S; Wang H; Balasubramanian R; Siddique KHM
    Sci Total Environ; 2022 May; 822():153555. PubMed ID: 35104528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and desorption processes of toxic heavy metals, regeneration and reusability of spent adsorbents: Economic and environmental sustainability approach.
    Bayuo J; Rwiza MJ; Choi JW; Mtei KM; Hosseini-Bandegharaei A; Sillanpää M
    Adv Colloid Interface Sci; 2024 Jul; 329():103196. PubMed ID: 38781828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants.
    Selvasembian R; Gwenzi W; Chaukura N; Mthembu S
    J Hazard Mater; 2021 Sep; 417():125960. PubMed ID: 34229405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Industrial waste-based adsorbents as a new trend for removal of water-borne emerging contaminants.
    Rangappa HS; Herath I; Lin C; Ch S
    Environ Pollut; 2024 Feb; 343():123140. PubMed ID: 38103712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable adsorbents for the removal of pharmaceuticals from wastewater: A review.
    Vinayagam V; Murugan S; Kumaresan R; Narayanan M; Sillanpää M; Viet N Vo D; Kushwaha OS; Jenis P; Potdar P; Gadiya S
    Chemosphere; 2022 Aug; 300():134597. PubMed ID: 35439481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review.
    Othmani A; Magdouli S; Senthil Kumar P; Kapoor A; Chellam PV; Gökkuş Ö
    Environ Res; 2022 Mar; 204(Pt A):111916. PubMed ID: 34428450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on sustainable management of biomass: physicochemical modification and its application for the removal of recalcitrant pollutants-challenges, opportunities, and future directions.
    Tan YY; Abdul Raman AA; Zainal Abidin MII; Buthiyappan A
    Environ Sci Pollut Res Int; 2024 May; 31(25):36492-36531. PubMed ID: 38748350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of sludge based adsorbents for the removal of various pollutants: A review.
    Devi P; Saroha AK
    Sci Total Environ; 2017 Feb; 578():16-33. PubMed ID: 27838056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of heavy metals containing wastewater using biodegradable adsorbents: A review of mechanism and future trends.
    Anderson A; Anbarasu A; Pasupuleti RR; Manigandan S; Praveenkumar TR; Aravind Kumar J
    Chemosphere; 2022 May; 295():133724. PubMed ID: 35101432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greywater characteristics, impacts, treatment, and reclamation using adsorption processes towards the circular economy.
    Khajvand M; Mostafazadeh AK; Drogui P; Tyagi RD; Brien E
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):10966-11003. PubMed ID: 35001276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd
    Fouda-Mbanga BG; Prabakaran E; Pillay K
    Biotechnol Rep (Amst); 2021 Jun; 30():e00609. PubMed ID: 33898275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive review on the removal of noxious pollutants using carrageenan based advanced adsorbents.
    Sharma G; Khosla A; Kumar A; Kaushal N; Sharma S; Naushad M; Vo DN; Iqbal J; Stadler FJ
    Chemosphere; 2022 Feb; 289():133100. PubMed ID: 34843837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical review.
    Ashiq A; Vithanage M; Sarkar B; Kumar M; Bhatnagar A; Khan E; Xi Y; Ok YS
    Environ Res; 2021 Jun; 197():111091. PubMed ID: 33794177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of active pharmaceutical ingredients from simulated spent activated carbonaceous adsorbents.
    Oesterle P; Lindberg RH; Fick J; Jansson S
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25572-25581. PubMed ID: 32356053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why reuse spent adsorbents? The latest challenges and limitations.
    Gkika DA; Mitropoulos AC; Kyzas GZ
    Sci Total Environ; 2022 May; 822():153612. PubMed ID: 35114231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review.
    Momina ; Shahadat M; Isamil S
    RSC Adv; 2018 Jul; 8(43):24571-24587. PubMed ID: 35539168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method.
    Rashid R; Shafiq I; Akhter P; Iqbal MJ; Hussain M
    Environ Sci Pollut Res Int; 2021 Feb; 28(8):9050-9066. PubMed ID: 33483933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review on biopolymers and composites - Evolving material as adsorbents in removal of environmental pollutants.
    Yaashikaa PR; Senthil Kumar P; Karishma S
    Environ Res; 2022 Sep; 212(Pt A):113114. PubMed ID: 35331699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic and antimony desorption in water treatment processes: Scaling up challenges with emerging adsorbents.
    Carneiro MA; Pintor AMA; Boaventura RAR; Botelho CMS
    Sci Total Environ; 2024 Jun; 929():172602. PubMed ID: 38653411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review.
    Tian B; Hua S; Tian Y; Liu J
    Environ Sci Pollut Res Int; 2021 Jan; 28(2):1317-1340. PubMed ID: 33079345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.