These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35104580)

  • 1. No evidence for auditory N1 dishabituation in healthy adults after presentation of rare novel distractors.
    Rosburg T; Weigl M; Mager R
    Int J Psychophysiol; 2022 Apr; 174():1-8. PubMed ID: 35104580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reduced auditory evoked potential component N1 after repeated stimulation: Refractoriness hypothesis vs. habituation account.
    Rosburg T; Mager R
    Hear Res; 2021 Feb; 400():108140. PubMed ID: 33316574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The response decrease of auditory evoked potentials by repeated stimulation--Is there evidence for an interplay between habituation and sensitization?
    Rosburg T; Sörös P
    Clin Neurophysiol; 2016 Jan; 127(1):397-408. PubMed ID: 26004505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The release from refractoriness hypothesis of N1 of event-related potentials needs reassessment.
    Ruusuvirta T
    Hear Res; 2021 Jan; 399():107923. PubMed ID: 32089324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in evoked potentials during the active processing of sound location and motion.
    Richter N; Schröger E; Rübsamen R
    Neuropsychologia; 2013 Jun; 51(7):1204-14. PubMed ID: 23499852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The habituation of event-related potentials to speech sounds and tones.
    Woods DL; Elmasian R
    Electroencephalogr Clin Neurophysiol; 1986 Nov; 65(6):447-59. PubMed ID: 2429824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory N1 as a change-related automatic response.
    Nishihara M; Inui K; Motomura E; Otsuru N; Ushida T; Kakigi R
    Neurosci Res; 2011 Oct; 71(2):145-8. PubMed ID: 21787811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Varying effect of noise on sound onset and acoustic change evoked auditory cortical N1 responses evoked by a vowel-vowel stimulus.
    Yaralı M
    Int J Psychophysiol; 2020 Jun; 152():36-43. PubMed ID: 32302643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG signatures of auditory activity correlate with simultaneously recorded fMRI responses in humans.
    Mayhew SD; Dirckx SG; Niazy RK; Iannetti GD; Wise RG
    Neuroimage; 2010 Jan; 49(1):849-64. PubMed ID: 19591945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similar sound intensity dependence of the N1 and P2 components of the auditory ERP: Averaged and single trial evidence.
    Paiva TO; Almeida PR; Ferreira-Santos F; Vieira JB; Silveira C; Chaves PL; Barbosa F; Marques-Teixeira J
    Clin Neurophysiol; 2016 Jan; 127(1):499-508. PubMed ID: 26154993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habituation deficit of auditory N100m in patients with fibromyalgia.
    Choi W; Lim M; Kim JS; Chung CK
    Eur J Pain; 2016 Nov; 20(10):1634-1643. PubMed ID: 27161442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dishabituation of laser-evoked EEG responses: dissecting the effect of certain and uncertain changes in stimulus modality.
    Valentini E; Torta DM; Mouraux A; Iannetti GD
    J Cogn Neurosci; 2011 Oct; 23(10):2822-37. PubMed ID: 21265604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Habituation of the auditory evoked potential in a short interstimulus interval paradigm.
    Ozesmi C; Dolu N; Süer C; Gölgeli A; Aşçioglu M
    Int J Neurosci; 2000 Nov; 105(1-4):87-95. PubMed ID: 11069049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The time course of the amplitude and latency in the auditory late response evoked by repeated tone bursts.
    Zhang F; Eliassen J; Anderson J; Scheifele P; Brown D
    J Am Acad Audiol; 2009 Apr; 20(4):239-50. PubMed ID: 19927696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different mechanisms are responsible for dishabituation of electrophysiological auditory responses to a change in acoustic identity than to a change in stimulus location.
    Smulders TV; Jarvis ED
    Neurobiol Learn Mem; 2013 Nov; 106():163-76. PubMed ID: 23999220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decrement of the N1 auditory event-related potential with stimulus repetition: habituation vs. refractoriness.
    Budd TW; Barry RJ; Gordon E; Rennie C; Michie PT
    Int J Psychophysiol; 1998 Dec; 31(1):51-68. PubMed ID: 9934621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal maturation of the central and lateral N1 components to tones.
    Gomes H; Dunn M; Ritter W; Kurtzberg D; Brattson A; Kreuzer JA; Vaughan HG
    Brain Res Dev Brain Res; 2001 Aug; 129(2):147-55. PubMed ID: 11506859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trial effects in single-trial ERP components and autonomic responses at very long ISIs.
    MacDonald B; Barry RJ
    Int J Psychophysiol; 2014 Jun; 92(3):99-112. PubMed ID: 24681245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical evoked response to gaps in noise: within-channel and across-channel conditions.
    Lister JJ; Maxfield ND; Pitt GJ
    Ear Hear; 2007 Dec; 28(6):862-78. PubMed ID: 17982372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of three investigations of Novelty, Intensity, and Significance in dishabituation paradigms: A study of the phasic Orienting Reflex.
    MacDonald B; Barry RJ
    Int J Psychophysiol; 2020 Jan; 147():113-127. PubMed ID: 31778726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.