BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35104611)

  • 21. Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox.
    Hiblot J; Gotthard G; Elias M; Chabriere E
    PLoS One; 2013; 8(9):e75272. PubMed ID: 24086491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promiscuity of Exiguobacterium sp. AT1b o-succinylbenzoate synthase illustrates evolutionary transitions in the OSBS family.
    Brizendine AM; Odokonyero D; McMillan AW; Zhu M; Hull K; Romo D; Glasner ME
    Biochem Biophys Res Commun; 2014 Jul; 450(1):679-84. PubMed ID: 24937446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frustration can Limit the Adaptation of Promiscuous Enzymes Through Gene Duplication and Specialisation.
    Schmutzer M; Dasmeh P; Wagner A
    J Mol Evol; 2024 Apr; 92(2):104-120. PubMed ID: 38470504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB.
    Yu B; Hunt JF
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14315-20. PubMed ID: 19706517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways.
    Bornscheuer UT; Kazlauskas RJ
    Angew Chem Int Ed Engl; 2004 Nov; 43(45):6032-40. PubMed ID: 15523680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulations reveal the key role of Arg15 in the promiscuous activity in the HisA enzyme.
    Dubey KD; Singh W
    Org Biomol Chem; 2021 Dec; 19(48):10652-10661. PubMed ID: 34854451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ensemble perspective for catalytic promiscuity: calorimetric analysis of the active site conformational landscape of a detoxification enzyme.
    Honaker MT; Acchione M; Sumida JP; Atkins WM
    J Biol Chem; 2011 Dec; 286(49):42770-42776. PubMed ID: 22002059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1.
    Ben-David M; Elias M; Filippi JJ; Duñach E; Silman I; Sussman JL; Tawfik DS
    J Mol Biol; 2012 May; 418(3-4):181-96. PubMed ID: 22387469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation.
    Glasner ME; Truong DP; Morse BC
    FEBS J; 2020 Apr; 287(7):1323-1342. PubMed ID: 31858709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A measure of the broad substrate specificity of enzymes based on 'duplicate' catalytic residues.
    Chakraborty S; Ásgeirsson B; Rao BJ
    PLoS One; 2012; 7(11):e49313. PubMed ID: 23166637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary repurposing of a sulfatase: A new Michaelis complex leads to efficient transition state charge offset.
    Miton CM; Jonas S; Fischer G; Duarte F; Mohamed MF; van Loo B; Kintses B; Kamerlin SCL; Tokuriki N; Hyvönen M; Hollfelder F
    Proc Natl Acad Sci U S A; 2018 Jul; 115(31):E7293-E7302. PubMed ID: 30012610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily.
    Pabis A; Kamerlin SC
    Curr Opin Struct Biol; 2016 Apr; 37():14-21. PubMed ID: 26716576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploiting the rationale behind substrate recognition by promiscuous thermophilic NDP-sugar pyrophosphorylase for expanding glycorandomization: an
    Gogoi P; Mordina P; Kanaujia SP
    J Biomol Struct Dyn; 2021 Oct; 39(16):6099-6111. PubMed ID: 32692307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzyme promiscuity: engine of evolutionary innovation.
    Pandya C; Farelli JD; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2014 Oct; 289(44):30229-30236. PubMed ID: 25210039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Promiscuous catalysis by the tetrahymena group I ribozyme.
    Forconi M; Herschlag D
    J Am Chem Soc; 2005 May; 127(17):6160-1. PubMed ID: 15853307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic detoxication, conformational selection, and the role of molten globule active sites.
    Honaker MT; Acchione M; Zhang W; Mannervik B; Atkins WM
    J Biol Chem; 2013 Jun; 288(25):18599-611. PubMed ID: 23649628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.
    Haupt VJ; Daminelli S; Schroeder M
    PLoS One; 2013; 8(6):e65894. PubMed ID: 23805191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A measure of the promiscuity of proteins and characteristics of residues in the vicinity of the catalytic site that regulate promiscuity.
    Chakraborty S; Rao BJ
    PLoS One; 2012; 7(2):e32011. PubMed ID: 22359655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determinants and Prediction of Esterase Substrate Promiscuity Patterns.
    Martínez-Martínez M; Coscolín C; Santiago G; Chow J; Stogios PJ; Bargiela R; Gertler C; Navarro-Fernández J; Bollinger A; Thies S; Méndez-García C; Popovic A; Brown G; Chernikova TN; García-Moyano A; Bjerga GEK; Pérez-García P; Hai T; Del Pozo MV; Stokke R; Steen IH; Cui H; Xu X; Nocek BP; Alcaide M; Distaso M; Mesa V; Peláez AI; Sánchez J; Buchholz PCF; Pleiss J; Fernández-Guerra A; Glöckner FO; Golyshina OV; Yakimov MM; Savchenko A; Jaeger KE; Yakunin AF; Streit WR; Golyshin PN; Guallar V; Ferrer M; The Inmare Consortium
    ACS Chem Biol; 2018 Jan; 13(1):225-234. PubMed ID: 29182315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.